In this study we investigated the impact of dietary protein and carotene levels on microbial functions and composition during the last month of purebred fattening Duroc pigs. Fecal microbiota was characterized using 16S ribosomal RNA sequencing at two points of live, 165 (T1) and 195 (T2) days. From 70 to 165 days of age, 32 pigs were divided into two groups fed either a standard-protein (SP) or a low-protein (LP) diet. In the last month (165–195 days), all pigs received a LP diet, either carotene-enriched (CE) or not (NC). Significant differences were observed between T1 and T2 at Amplicon Sequences Variants (ASVs), phylum and genus levels. In T1 group, Prevotella, Faecalibacterium and Treponema were the genera most influenced by dietary protein, together with predicted functions related with the degradation of protein. In contrast, the CE diet did not impact the microbiome diversity, although 160 ASVs were differentially abundant between CE and NC groups at T2. Weak stability of enterotype clusters across time-points was observed as consequence of medium-term dietary interventions. Our results suggest that during the last month of fattening, dietary protein have a stronger effect than carotenes on the modulation of the compositional and functional structure of the pig microbiota.
Maternal effects on offspring growth can impact survival and evolution of natural and domesticated populations. Genetic correlation estimates often support a negative relationship between direct and maternal effects. However, the genetic underpinnings whereby this antagonism operates are unclear. In pigs, sow feeding status and body composition condition piglet development and growth. We hypothesized that variants in genes impacting these traits may be causative of maternal influences that could be antagonistic to the direct effects for piglet growth. A recessive missense mutation (C>T) in the porcine leptin receptor (LEPR) gene (rs709596309) has been identified as the possible causal polymorphism for increased feed intake and fatness. Using data from a Duroc line, we show that the TT sows exerted a negative impact on the body weight of their offspring at the end of the growing period of similar extent to the positive direct effect of the TT genotype over each individual. Thus, TT pigs from TT dams were about as heavy as CC and CT (C–) pigs from C–dams, but TT pigs from C–dams were around 5% heavier than C–pigs from TT dams. In contrast, body composition was only influenced by LEPR direct effects. This antagonism is due to a higher propensity of TT pigs for self-maintenance rather than for offspring investment. We show that TT pigs consumed more feed, favored fatty acid uptake over release, and produced lighter piglets at weaning than their C–counterparts. We conclude that LEPR underlies a transgenerational mechanism for energy distribution that allocates resources to the sow or the offspring according to whether selective pressure is exerted before or after weaning.
The bulk of body fat in mammals is in the form of triacylglycerol. Diacylglycerol O-acyltransferase 2 (DGAT2) catalyses the terminal step in triacylglycerol synthesis. The proximity of DGAT2 with stearoyl-CoA desaturase (SCD) in the endoplasmic reticulum may facilitate provision of de novo SCD-mediated fatty acids as substrate for DGAT2. Here, we first searched for sequence variants in the DGAT2 gene to then validate their effect on fat content and fatty acid composition in muscle, subcutaneous fat and liver of 1129 Duroc pigs. A single nucleotide polymorphism in exon 9 (ss7315407085 G > A) was selected as a tag variant for the 33 sequence variants identified in the DGAT2 region. The DGAT2-G allele increased DGAT2 expression in muscle and had a positive impact on muscular C14 and C16 fatty acids at the expense of C18 fatty acids. Although there was no evidence for an interaction of DGAT2 with functional SCD genotypes, pigs carrying the DGAT2-G allele had proportionally more palmitoleic acid relative to palmitic acid. Our findings indicate that DGAT2 preferentially uptakes shorter rather than longer-chain fatty acids as substrate, especially if they are monounsaturated, and confirm that fatty acid metabolism in pigs is subjected to subtle tissue-specific genetic regulatory mechanisms.
Background The composition of intramuscular fat depends on genetic and environmental factors, including the diet. In pigs, we identified a haplotype of three SNP mutations in the stearoyl-coA desaturase (SCD) gene promoter associated with higher content of monounsaturated fatty acids in intramuscular fat. The second of these three SNPs (rs80912566, C > T) affected a putative retinol response element in the SCD promoter. The effect of dietary vitamin A restriction over intramuscular fat content is controversial as it depends on the pig genetic line and the duration of the restriction. This study aims to investigate changes in the muscle transcriptome in SCD rs80912566 TT and CC pigs fed with and without a vitamin A supplement during the fattening period. Results Vitamin A did not affect carcass traits or intramuscular fat content and fatty acid composition, but we observed an interaction between vitamin A and SCD genotype on the desaturation of fatty acids in muscle. As reported before, the SCD-TT pigs had more monounsaturated fat than the SCD-CC animals. The diet lacking the vitamin A supplement enlarged fatty acid compositional differences between SCD genotypes, partly because vitamin A had a bigger effect on fatty acid desaturation in SCD-CC pigs (positive) than in SCD-TT and SCD-TC animals (negative). The interaction between diet and genotype was also evident at the transcriptome level; the highest number of differentially expressed genes were detected between SCD-TT pigs fed with the two diets. The genes modulated by the diet with the vitamin A supplement belonged to metabolic and signalling pathways related to immunity and inflammation, transport through membrane-bounded vesicles, fat metabolism and transport, reflecting the impact of retinol on a wide range of metabolic processes. Conclusions Restricting dietary vitamin A during the fattening period did not improve intramuscular fat content despite relevant changes in muscle gene expression, both in coding and non-coding genes. Vitamin A activated general pathways of retinol response in a SCD genotype-dependant manner, which affected the monounsaturated fatty acid content, particularly in SCD-CC pigs.
The effectiveness of NVP and nonadjusted EFV was lower than adjusted EFV-based ART. It may be advisable to increase the dose of EFV to 800 mg once daily when administered with rifampin in patients weighing >60 kg.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.