This Research Communication describes an investigation into the viability of an Intermittently Aerated Sequencing Batch Reactor (IASBR) for the treatment of dairy processing wastewater at laboratory-scale. A number of operational parameters have been varied and the effect has been monitored in order to determine optimal conditions for maximising removal efficiencies. These operational parameters include Hydraulic Retention Time (HRT), Solids Retention Time (SRT), aeration rate and cycle length. Real dairy processing wastewater and synthetic wastewater have been treated using three laboratory-scale IASBR units in a temperature controlled room. When the operational conditions were established, the units were seeded using sludge from a municipal wastewater treatment plant for the first experiment, and sludge from a dairy processing factory for the second and third experiment. In experiment three, the reactors were fed on real wastewater from the wastewater treatment plant at this dairy processing factory. These laboratory-scale systems will be used to demonstrate over time that the IASBR system is a consistent, viable option for treatment of dairy processing wastewater in this sector. In this study, the capacity of a biological system to remove both nitrogen and phosphorus within one reactor will be demonstrated. The initial operational parameters for a pilot-scale IASBR system will be derived from the results of the study.
In this Research Communication we investigate potential correlations between key bacterial groups and nutrient removal efficiency in an Intermittently Aerated Sequencing Batch Reactor (IASBR) treating synthetic dairy processing wastewater. Reactor aeration rates of 0·6 and 0·4 litre per minute (LPM) were applied to an 8 l laboratory scale system and the relative impacts on IASBR microbial community structure and orthophosphate (PO4-P) and ammonium (NH4-N) removal efficiencies compared. Aeration at 0·6 LPM over several sludge retention times (SRTs) resulted in approximately 92% removal efficiencies for both PO4-P and NH4-N. Biomass samples subjected to next-generation sequencing (NGS), 16S rRNA profiling revealed a concomitant enrichment of Polaromonas under 0·6 LPM conditions, up to ~50% relative abundance within the reactor biomass. The subsequent shift in reactor aeration to 0·4 LPM, over a period of 3 SRTs, resulted in markedly reduced nutrient removal efficiencies for PO4-P (50%) and NH4-N (45%). An 85·7% reduction in the genus level relative abundance of Polaromonas was observed under 0·4 LPM aeration conditions over the same period.
This Review describes the objectives and methodology of the DairyWater project as it aims to aid the Irish dairy processing industry in achieving sustainability as it expands. With the abolition of European milk quotas in March 2015, the Republic of Ireland saw a surge in milk production. The DairyWater project was established in anticipation of this expansion of the Irish dairy sector in order to develop innovative solutions for the efficient management of water consumption, wastewater treatment and the resulting energy use within the country's dairy processing industry. Therefore, the project can be divided into three main thematic areas: dairy wastewater treatment technologies and microbial analysis, water re-use and rainwater harvesting and environmental assessment. In order to ensure the project remains as relevant as possible to the industry, a project advisory board containing key industry stakeholders has been established. To date, a number of large scale studies, using data obtained directly from the Irish dairy industry, have been performed. Additionally, pilot-scale wastewater treatment (intermittently aerated sequencing batch reactor) and tertiary treatment (flow-through pulsed ultraviolet system) technologies have been demonstrated within the project. Further details on selected aspects of the project are discussed in greater detail in the subsequent cluster of research communications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.