Inland and coastal waterbodies are critical components of the global biosphere. Timely monitoring is necessary to enhance our understanding of their functions, the drivers impacting on these functions and to deliver more effective management. The ability to observe waterbodies from space has led to Earth observation (EO) becoming established as an important source of information on water quality and ecosystem condition. However, progress toward a globally valid EO approach is still largely hampered by inconsistences over temporally and spatially variable in-water optical conditions. In this study, a comprehensive dataset from more than 250 aquatic systems, representing a wide range of conditions, was analyzed in order to develop a typology of optical water types (OWTs) for inland and coastal waters. We introduce a novel approach for clustering in situ hyperspectral water reflectance measurements (n 5 4045) from multiple sources based on a functional data analysis. The resulting classification algorithm identified 13 spectrally distinct clusters of measurements in inland waters, and a further nine clusters from the marine environment. The distinction and characterization of OWTs was supported by the availability of a wide range of coincident data on biogeochemical and inherent optical properties from inland waters. Phylogenetic trees based on the shapes of cluster means were constructed to identify similarities among the derived clusters with respect to spectral diversity. This typification provides a valuable framework for a globally applicable EO scheme and the design of future EO missions.
If citing, it is advised that you check and use the publisher's definitive version for pagination, volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are again advised to check the publisher's website for any subsequent corrections.
Repeat observations underpin our understanding of environmental processes, but financial constraints often limit scientists’ ability to deploy dense networks of conventional commercial instrumentation. Rapid growth in the Internet-Of-Things (IoT) and the maker movement is paving the way for low-cost electronic sensors to transform global environmental monitoring. Accessible and inexpensive sensor construction is also fostering exciting opportunities for citizen science and participatory research. Drawing on 6 years of developmental work with Arduino-based open-source hardware and software, extensive laboratory and field testing, and incorporation of such technology into active research programmes, we outline a series of successes, failures and lessons learned in designing and deploying environmental sensors. Six case studies are presented: a water table depth probe, air and water quality sensors, multi-parameter weather stations, a time-sequencing lake sediment trap, and a sonic anemometer for monitoring sand transport. Schematics, code and purchasing guidance to reproduce our sensors are described in the paper, with detailed build instructions hosted on our King’s College London Geography Environmental Sensors Github repository and the FreeStation project website. We show in each case study that manual design and construction can produce research-grade scientific instrumentation (mean bias error for calibrated sensors –0.04 to 23%) for a fraction of the conventional cost, provided rigorous, sensor-specific calibration and field testing is conducted. In sharing our collective experiences with build-it-yourself environmental monitoring, we intend for this paper to act as a catalyst for physical geographers and the wider environmental science community to begin incorporating low-cost sensor development into their research activities. The capacity to deploy denser sensor networks should ultimately lead to superior environmental monitoring at the local to global scales.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.