3-hydroxyanthranilate 3,4-dioxygenase (HAAO) is an intermediate enzyme in the conversion from tryptophan (TRP) to nicotinamide adenine dinucleotide (NAD+) via the kynurenine pathway. The kynurenine pathway is the sole »de novo» NAD+ biosynthetic pathway from ingested tryptophan. Inhibition of several enzymatic steps in the kynurenine pathway increases lifespan in Drosophila melanogaster, Saccharomyces cerevisiae, and Caenorhabditis elegans. Knockout or knockdown of haao-1, the C. elegans gene encoding HAAO, or supplementation of its substrate metabolite 3-hydroxyanthranilic acid (3HAA), has been shown to promote healthy lifespan extension; however, the underlying mechanism remains unknown. In the present study, we report that haao-1 knockdown induces oxidative stress resistance against several reactive oxygen species (ROS) inducing agents by activating the Nrf2/SKN-1 oxidative stress response pathway. An examination of the redox state of animals with reduced haao-1 suggests that activation of the Nrf2/SKN-1 pathway is mediated by shifting the balance toward generation of ROS, generating a hormetic effect. Our results identify a novel mechanism for an endogenous metabolite (3HAA) that activates the oxidative stress response. These results provide a conceptual basis by which modulation of the kynurenine pathway can promote healthy aging and enhanced stress resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.