Abstract. This paper gives an update of the RTTOV (Radiative Transfer for TOVS) fast radiative transfer model, which is widely used in the satellite retrieval and data assimilation communities. RTTOV is a fast radiative transfer model for simulating top-of-atmosphere radiances from passive visible, infrared and microwave downward-viewing satellite radiometers. In addition to the forward model, it also optionally computes the tangent linear, adjoint and Jacobian matrix providing changes in radiances for profile variable perturbations assuming a linear relationship about a given atmospheric state. This makes it a useful tool for developing physical retrievals from satellite radiances, for direct radiance assimilation in NWP models, for simulating future instruments, and for training or teaching with a graphical user interface. An overview of the RTTOV model is given, highlighting the updates and increased capability of the latest versions, and it gives some examples of its current performance when compared with more accurate line-by-line radiative transfer models and a few selected observations. The improvement over the original version of the model released in 1999 is demonstrated.
Abstract.A new method of deriving high-resolution topof-atmosphere spectral radiances in 10 181 bands, over the whole outgoing long-wave spectrum of the Earth, is presented. Correlations between different channels measured by the Infrared Atmospheric Sounding Interfermeter (IASI) on the MetOp-A (Meteorological Operation) satellite and unobserved wavenumbers are used to estimate far infrared (FIR) radiances at 0.5 cm −1 intervals between 25.25 and 644.75 cm −1 (the FIR), and additionally between 2760 and 3000 cm −1 (the NIR -near infrared). Radiances simulated by the line-by-line radiative transfer model (LBLRTM) are used to construct the prediction model. The spectrum is validated by comparing the Integrated Nadir Long-wave Radiance (INLR) product spanning the whole 25.25-3000 cm −1 range with the corresponding broadband measurements from the Clouds and the Earth's Radiant Energy System (CERES) instrument on the Terra and Aqua satellites at points of simultaneous nadir overpass. There is a mean difference of 0.3 W m −2 sr −1 (0.5 % relative difference). This is well within the uncertainties associated with the measurements made by either instrument. However, there is a noticeable contrast when the bias is separated into night-time and daytime scenes with the latter being significantly larger, possibly due to errors in the CERES Ed3 Spectral Response Functions (SRF) correction method. In the absence of an operational spaceborne instrument that isolates the FIR, this product provides a useful proxy for such measurements within the limits of the regression model it is based on, which is shown to have very low root mean squared errors. The new high-resolution spectrum is presented for global mean clear and all skies where the FIR is shown to contribute 44 and 47 % to the total INLR, respectively. In terms of the spectral cloud effect (Cloud Integrated Nadir Long-wave Radiance -CINLR), the FIR contributes 19 % and in some subtropical instances appears to be negative; results that would go unobserved with a traditional broadband analysis.
Abstract. This paper describes a new gas optical depth parameterisation implemented in the most recent release, version 13, of the radiative transfer model RTTOV (Radiative Transfer for TOVS). RTTOV is a fast, one-dimensional radiative transfer model for simulating top-of-atmosphere visible, infrared, and microwave radiances observed by downward-viewing space-borne passive sensors. A key component of the model is the fast parameterisation of absorption by the various gases in the atmosphere. The existing parameterisation in RTTOV has been extended over many years to allow for additional variable gases in RTTOV simulations and to account for solar radiation and better support geostationary sensors by extending the validity to higher zenith angles. However, there are limitations inherent in the current approach which make it difficult to develop it further, for example by adding new variable gases. We describe a new parameterisation that can be applied across the whole spectrum, that allows for a wide range of zenith angles in support of solar radiation and geostationary sensors, and for which it will be easier to add new variable gases in support of user requirements. Comparisons against line-by-line radiative transfer simulations and against observations in the ECMWF operational system yield promising results, suggesting that the new parameterisation generally compares well with the old one in terms of accuracy. Further validation is planned, including testing in operational numerical weather prediction data assimilation systems.
What: Members of the atmospheric and astronomical science communities met to review the current state of the art of the submillimeter spectral region. Knowledge of gas spectroscopy is still questionable at these frequencies but is important to fully exploit upcoming meteorological satellite measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.