Precipitation of metals as metal sulphides is a practical way to recover metals from mine water. Sulphide precipitation is useful since many metals are very sparingly soluble as sulphides. Precipitation is also pH dependent. This article investigates the precipitation of metals individually as sulphides and assesses which metals are precipitated as metal hydroxides by adjustment of the pH. The precipitation of different metals as sulphides was studied to determine the conditions under which the HS− solution from the sulphate reduction reaction could be used for precipitation. H2S gas and ionic HS− produced during anaerobic treatment could be recycled from the process to precipitate metals in acidic mine drainage (AMD) prior to anaerobic treatment (Biological sulphate reduction), thereby recovering several metals. Precipitation of metals with HS− was fast and produced fine precipitates. The pH of acid mine water is about 2–4, and it can be adjusted to pH 5.5 before sulphide precipitation, while the precipitation, on the other hand, requires a sulphide solution with pH at 8 and the sulphide in HS− form. This prevents H2S formation and mitigates the risk posed from the evaporation of toxic hydrogen sulphur gas. This is a lower increase than is required for hydroxide precipitation, in which pH is typically raised to approximately nine. After precipitation, metal concentrations ranged from 1 to 30 μg/L.
Batch electrocoagulation (BEC), continuous electrocoagulation (CEC), and chemical precipitation (CP) were compared in struvite (MgNH4PO4·6H2O) precipitation from synthetic and authentic water. In synthetic water treatment (SWT), struvite yield was in BEC 1.72, CEC 0.61, and CP 1.54 kg/m3. Corresponding values in authentic water treatment (AWT) were 2.55, 3.04, and 2.47 kg/m3. In SWT, 1 kg struvite costs in BEC, CEC, and CP were 0.55, 0.55, and 0.11 €, respectively, for AWT 0.35, 0.22 and 0.07 €. Phosphate removal in SWT was 93.6, 74.5, and 71.6% in BEC, CEC, and CP, respectively, the corresponding rates in AWT were 89.7, 77.8, and 74.4%. Ammonium removal for SWT in BEC, CEC, and CP were 79.4, 51.5, and 62.5%, respectively, rates in AWT 56.1, 64.1, and 60.9%. Efficiency in CEC and BEC are equal in nutrient recovery in SWT, although energy efficiency was better in CEC. CP is cheaper than BEC and CEC.
Precipitation as ettringite (Ca 6 Al 2 (SO 4 ) 3 (OH) 12 •26H 2 O) is an effective method for sulphate removal from mine water. The addition of calcium hydroxide and aluminium to sulphate-containing mine water in stoichiometric amounts induces an increase in pH to approximately 12.5, leading to the precipitation of ettringite. Typically, aluminium salts are used as the source of aluminium; however, in this research, an electrochemical dosage of aluminium was used, and the results were compared with the results of chemical ettringite precipitation as well as the results of computational simulations of sulphate removal. The mine water sulphate concentration was reduced 99.0% and 98.6% from the initial 1,060 ± 20 mg L -1 using a current density of 28 mA cm -2 in electrochemical aluminium dosing and chemical aluminium dosing, respectively, which was close to the theoretical 100% sulphate removal. When using the current density of 28 mA cm -2 in the electrochemical aluminium dosing, the recovered ettringite purity was 92.5%, which was almost the same as the 92.6% purity in the chemical aluminium dosing characterised with X-ray diffraction and Rietveld analysis. The results indicate that the electrochemical dosing of aluminium could be an alternative to aluminium salt application in ettringite precipitation.
The European Union's circular economy strategy aims to increase the recycling and re-use of products and waste materials. According to the strategy, the use of industry waste materials and side flows is required to be more effective. In this research, a chemical precipitation method to simultaneously remove ammonium and phosphate from the reject water of anaerobic digestion plant using calcined paper mill sludge and fly ash as a precipitant, was tested. Paper mill sludge is a waste material formed in the paper-making process, and fly ash is another waste material formed in the power plant. Objective of this research was to test whether these industrial waste streams could be used as low cost precipitation chemicals for ammonium and phosphate removal from wastewaters and whether the precipitate could be suitable for fertilizer use. Results indicated that calcined paper mill sludge had high removal efficiency for both ammonium (97%) and phosphate (73%). Fly ash also had good removal efficiency for both ammonium nitrogen (74%) and phosphate (59%) at 20 ± 2 °C. The precipitates contained high concentrations of nitrogen and phosphate and could be used as a recycled fertilizer. Other possible mechanisms for the removal of phosphate and ammonium were considered.
Chemical precipitation is one of the most widely known methods for treatment of industrial wastewaters with high sulphate content, where sulphate can be precipitated as practically insoluble ettringite (Ca6Al2(SO4)3(OH)12·26H2O). This treatment method is also widely recognised for solidifying hazardous components and toxic elements e.g. arsenic in wastewater. In the ettringite precipitation process, lime and aluminium salts are typically used as starting materials, in stoichiometric amounts to form ettringite from the sulphate-containing water, leading to a pH rise to ∼11.5 and ettringite precipitation. In the current study, for the first time, ye’elimite mineral (Ca4Al6O12SO4), also known as calcium sulfoaluminate (CSA) in cements, is used in order to investigate its suitability to form ettringite precipitate from sulphate and arsenic containing synthetic wastewater and industrial wastewater solutions. The dissolution of ye’elimite prior to dosing, optimal precipitation pH, and arsenic co-precipitation were studied. The effluent and precipitates were characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM-EDS) and inductively coupled plasma atomic emission spectroscopy (ICP-OES). The results showed that high percentage of sulphate removal (98% in the synthetic wastewater and 87% in the industrial wastewater) can be achieved using ye’elimite as the aluminium source in ettringite precipitation. Additionally, up to 95% arsenic removal was achieved in arsenic co-precipitation experiments from the synthetic wastewater. The current developed technology can be used as a novel ecological and cost-effective approach for removal of sulphate and toxic elements from wastewater.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.