Metal-halide perovskites have been widely investigated in the photovoltaic sector due to their promising optoelectronic properties and inexpensive fabrication techniques based on solution processing. Here we report the development of inorganic CsPbBr 3 -based photoanodes for direct photoelectrochemical oxygen evolution from aqueous electrolytes. We use a commercial thermal graphite sheet and a mesoporous carbon scaffold to encapsulate CsPbBr 3 as an inexpensive and efficient protection strategy. We achieve a record stability of 30 h in aqueous electrolyte under constant simulated solar illumination, with currents above 2 mA cm −2 at 1.23 V RHE . We further demonstrate the versatility of our approach by grafting a molecular Ir-based water oxidation catalyst on the electrolyte-facing surface of the sealing graphite sheet, which cathodically shifts the onset potential of the composite photoanode due to accelerated charge transfer. These results suggest an efficient route to develop stable halide perovskite based electrodes for photoelectrochemical solar fuel generation.
With fossil fuels still predicted to contribute close to 80 % of the primary energy consumption by 2040, methods to limit further CO2 emissions in the atmosphere are urgently needed to avoid the catastrophic scenarios associated with global warming. In parallel with improvements in energy efficiency and CO2 storage, the conversion of CO2 has emerged as a complementary route with significant potential. In this work we present the direct thermo-catalytic conversion of CO2 to hydrocarbons using a novel iron nanoparticle-carbon nanotube (Fe@CNT) catalyst. We adopted a holistic and systematic approach to CO2 conversion by integrating process optimization-identifying reaction conditions to maximize conversion and selectivity towards long chain hydrocarbons and/or short olefins-with catalyst optimization through the addition of promoters. The result is the production of valuable hydrocarbons in a manner that can approach carbon neutrality under realistic industrial process conditions.
Oxygen-deficient iron oxide thin films, which have recently been shown to be highly active for photoelectrochemical water oxidation, were surface-functionalized with a monolayer of a molecular iridium water oxidation cocatalyst. The iridium catalyst was found to dramatically improve the kinetics of the water oxidation reaction at both stoichiometric and nonstoichiometric α-Fe 2 O 3-x surfaces. This was found to be the case in both the dark and in the light as evidenced by cyclic voltammetry, Tafel analysis, and electrochemical impedance spectroscopy (EIS). Oxygen evolution measurements under working conditions confirmed high Faradaic efficiencies of 69−100% and good stability over 22 h of operation for the functionalized electrodes. The resulting ∼200−300 mV shift in onset potential for the iridiumfunctionalized sample was attributed to improved interfacial charge transfer and oxygen evolution kinetics. Mott−Schottky plots revealed that there was no shift in flat-band potential or change in donor density following functionalization with the catalyst. The effect of the catalyst on thermodynamics and Fermi level pinning was also found to be negligible, as evidenced by opencircuit potential measurements. Finally, transient photocurrent measurements revealed that the tethered molecular catalyst did improve charge separation and increase charge density at the surface of the photoanodes, but only at high applied biases and only for the nonstoichiometric oxygen-deficient iron oxide films. These results demonstrate how molecular catalysts can be integrated with semiconductors to yield cooperative effects for photoelectrochemical water oxidation.
Six novel derivatives of pyridine-alkoxide ligated Cp*Ir III complexes, potent precursors for homogeneous water and C−H oxidation catalysts, have been synthesized, characterized, and analyzed spectroscopically and kinetically for ligand effects. Variation of alkoxide and pyridine substituents was found to affect their solution speciation, activation behavior, and oxidation kinetics. Application of these precursors to catalytic C−H oxidation of ethyl benzenesulfonate with aqueous sodium periodate showed that the ligand substitution pattern, solution pH, and solvent all have pronounced influences on initial rates and final conversion values. Correlation with O 2 evolution profiles during C−H oxidation catalysis showed these competing reactions to occur sequentially, and demonstrates how it is possible to tune the activity and selectivity of the active species through the N^O ligand structure.
We report the solution‐phase electrochemistry of seven half‐sandwich iridium(III) complexes with varying pyridine‐alkoxide ligands to quantify electronic ligand effects that translate to their activity in catalytic water oxidation. Our results unify some previously reported electrochemical data of Cp*Ir complexes by showing how the solution speciation determines the electrochemical response: cationic complexes show over 1 V higher redox potentials that their neutral forms in a distinct demonstration of charge accumulation effects relevant to water oxidation. Building on previous work that analysed the activation behaviour of our pyalk‐ligated Cp*Ir complexes 1–7, we assess their catalytic oxygen evolution activity with sodium periodate (NaIO4) and ceric ammonium nitrate (CAN) in water and aqueous tBuOH solution. Mechanistic studies including H/D kinetic isotope effects and reaction progress kinetic analysis (RPKA) of oxygen evolution point to a dimer‐monomer equilibrium of the IrIV resting state preceding a proton‐coupled electron transfer (PCET) in the turnover‐limiting step (TLS). Finally, true electrochemically driven water oxidation is demonstrated for all catalysts, revealing surprising trends in activity that do not correlate with those obtained using chemical oxidants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.