The
bicyclic boronate VNRX-5133 (taniborbactam) is a new type of
β-lactamase inhibitor in clinical development. We report that
VNRX-5133 inhibits serine-β-lactamases (SBLs) and some clinically
important metallo-β-lactamases (MBLs), including NDM-1 and VIM-1/2.
VNRX-5133 activity against IMP-1 and tested B2/B3 MBLs was lower/not
observed. Crystallography reveals how VNRX-5133 binds to the class
D SBL OXA-10 and MBL NDM-1. The crystallographic results highlight
the ability of bicyclic boronates to inhibit SBLs and MBLs via binding
of a tetrahedral (sp3) boron species. The structures imply
conserved binding of the bicyclic core with SBLs/MBLs. With NDM-1,
by crystallography, we observed an unanticipated VNRX-5133 binding
mode involving cyclization of its acylamino oxygen onto the boron
of the bicyclic core. Different side-chain binding modes for bicyclic
boronates for SBLs and MBLs imply scope for side-chain optimization.
The results further support the “high-energy-intermediate”
analogue approach for broad-spectrum β-lactamase inhibitor development
and highlight the ability of boron inhibitors to interchange between
different hybridization states/binding modes.
ObjectivesWidespread antimicrobial resistance often limits the availability of therapeutic options to only a few last-resort drugs that are themselves challenged by emerging resistance and adverse side effects. Apramycin, an aminoglycoside antibiotic, has a unique chemical structure that evades almost all resistance mechanisms including the RNA methyltransferases frequently encountered in carbapenemase-producing clinical isolates. This study evaluates the in vitro activity of apramycin against multidrug-, carbapenem- and aminoglycoside-resistant Enterobacteriaceae and Acinetobacter baumannii, and provides a rationale for its superior antibacterial activity in the presence of aminoglycoside resistance determinants.MethodsA thorough antibacterial assessment of apramycin with 1232 clinical isolates from Europe, Asia, Africa and South America was performed by standard CLSI broth microdilution testing. WGS and susceptibility testing with an engineered panel of aminoglycoside resistance-conferring determinants were used to provide a mechanistic rationale for the breadth of apramycin activity.ResultsMIC distributions and MIC90 values demonstrated broad antibacterial activity of apramycin against Escherichia coli, Klebsiella pneumoniae, Enterobacter spp., Morganella morganii, Citrobacter freundii, Providencia spp., Proteus mirabilis, Serratia marcescens and A. baumannii. Genotypic analysis revealed the variety of aminoglycoside-modifying enzymes and rRNA methyltransferases that rendered a remarkable proportion of clinical isolates resistant to standard-of-care aminoglycosides, but not to apramycin. Screening a panel of engineered strains each with a single well-defined resistance mechanism further demonstrated a lack of cross-resistance to gentamicin, amikacin, tobramycin and plazomicin.ConclusionsIts superior breadth of activity renders apramycin a promising drug candidate for the treatment of systemic Gram-negative infections that are resistant to treatment with other aminoglycoside antibiotics.
he increase in antibiotic resistance raises concerns that, at least in some regions, we are returning to a pre-antibiotic era, in particular for Gram-negative infections. The increased prevalence of extended-spectrum serine-β-lactamases (SBLs) and metallo-β-lactamases (MBLs) means β-lactams are increasingly ineffective in treating Gram-negative infections 1,2 . The advent of mobilized colistin resistance-1 in 2015 3 and transferable tigecycline resistance genes (tetX3-tetX5) in 2019 4 , which mediate resistance to colistin and tigecycline, respectively, means all clinically vital antibiotics for serious Gram-negative infections are compromised.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.