This study was conducted as a part of the Chromosome-Centric Human Proteome Project (C-HPP) of the Human Proteome Organization. The United States team of C-HPP is focused on characterizing the protein-coding genes in chromosome 17. Despite its small size, chromosome 17 is rich in protein-coding genes, it contains many cancer-associated genes, including BRCA1, ERBB2 (Her2/neu), and TP53. The goal of this study was to examine the splice variants expressed in three ERBB2 expressed breast cancer cell line models of hormone receptor negative breast cancers by integrating RNA-Seq and proteomic mass spectrometry data. The cell-lines represent distinct phenotypic variations subtype: SKBR3 (ERBB2+ (over-expression)/ ER−/PR−; adenocarcinoma), SUM190 (ERBB2+ (over-expression)/ER−/PR−; inflammatory breast cancer) and SUM149 (ERBB2 (low expression) ER−/PR −; inflammatory breast cancer). We identified more than one splice variant for 1167 genes expressed in at least one of the three cancer cell lines. We found multiple variants of genes that are in the signaling pathways downstream of ERBB2 along with variants specific to one cancer cell line compared to the other two cancer cell lines and to normal mammary cells. The overall transcript profiles based on read counts indicated more similarities between SKBR3 and SUM190. The top-ranking Gene Ontology and BioCarta pathways for the cell-line specific variants pointed to distinct key mechanisms including: amino sugar metabolism, caspase activity, and endocytosis in SKBR3; different aspects of metabolism, especially of lipids in SUM190; cell- to-cell adhesion, integrin and ERK1/ERK2 signaling, and translational control in SUM149. The analyses indicated an enrichment in the electron transport chain processes in the ERBB2 over-expressed cell line models; and an association of nucleotide binding, RNA splicing and translation processes with the IBC models, SUM190 and SUM149. Detailed experimental studies on the distinct variants identified from each of these three breast cancer cell line models may open opportunities for drug target discovery and help unveil their specific roles in cancer progression and metastasis.
In this study we selected three breast cancer cell lines (SKBR3, SUM149 and SUM190) with different oncogene expression levels involved in ERBB2 and EGFR signaling pathways as a model system for the evaluation of selective integration of subsets of transcriptomic and proteomic data. We assessed the oncogene status with RPKM values (Reads Per Kilobase per Million mapped reads1) for ERBB2 (14.4, 400 and 300 for SUM149, SUM 190 and SKBR3 respectively and for EGFR 60.1, not detected and 1.4 for the same 3 cell lines. We then used RNA-Seq data to identify those oncogenes with significant transcript levels in these cell lines (total 31) and interrogated the corresponding proteomics data sets for proteins with significant interaction values with these oncogenes. The number of observed interactors for each oncogene showed a significant range, e.g. 4.2% (JAK1) to 27.3% (MYC). The percentage is measured as a fraction of the total protein interactions in a given data set vs. total interactors for that oncogene in STRING (Search Tool for the Retrieval of Interacting Genes/Proteins, version 9.0) and I2D (Interologous Interaction Database, version 1.95). This approach allowed us to focus on 4 main oncogenes, ERBB2, EGFR, MYC, and GRB2, for pathway analysis. We used the following bioinformatics sites, GeneGo, PathwayCommons and NCI receptor signaling networks to identify pathways which contained the four main oncogenes, had good coverage in the transcriptomic and proteomic data sets as well as significant number of oncogene interactors. The four pathways identified were ERBB signaling, EGFR1 signaling, integrin outside-in signaling, and validated targets of C-MYC transcriptional activation. The greater dynamic range of the RNA-Seq values allowed the use of transcript ratios to correlate observed protein values with the relative levels of the ERBB2 and EGFR transcripts in each of the four pathways. This provided us with potential proteomic signatures for the SUM149 and 190 cell lines, growth factor receptor-bound protein 7 (GRB7), Crk-like protein (CRKL) and Catenin delta-1 (CTNND1) for ERBB signaling, caveolin 1 (CAV1), plectin (PLEC) for EGFR signaling; filamin A (FLNA) and actinin alpha1 (ACTN1) (associated with high levels of EGFR transcript) for integrin signalings: branched chain amino-acid transaminase 1 (BCAT1), carbamoyl-phosphate synthetase (CAD), nucleolin (NCL) (high levels of EGFR transcript); transferrin receptor (TFRC), metadherin (MTDH) (high levels of ERBB2 transcript) for MYC signaling; S100-A2 protein (S100A2), caveolin 1 (CAV1), Serpin B5 (SERPINB5), stratifin (SFN), PYD and CARD domain containing (PYCARD), and EPH receptor A2 (EPHA2) for PI3K signaling, p53 sub-pathway. Future studies of inflammatory breast cancer (IBC), from which the cell lines were derived, will be used to explore the significance of these observations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.