The human papillomavirus (HPV) transcription/replication factor E2 is essential for the life cycle of HPVs. E2 protein binds to DNA target sequences in the viral long control regions to regulate transcription of the viral genome. It also enhances viral DNA replication by interacting with the viral replication factor E1 and recruiting it to the origin of replication and may also play a more direct role in replication. The cellular proteins with which E2 interacts to carry out these functions are largely unknown. To identify these proteins a yeast twohybrid screen was carried out with the transcription/ replication domain of HPV16 E2. This screen identified several candidate interacting partners for E2 including TopBP1 (topoisomerase II-binding protein 1). TopBP1 has eight BRCA1 carboxyl-terminal domains that are found in proteins regulating the DNA damage response, transcription, and replication. Here we demonstrate that HPV16 E2 and TopBP1 interact in vitro and in vivo and that TopBP1 can enhance the ability of E2 to activate transcription and replication. This is the first time that TopBP1 has been shown to function as a transcriptional coactivator and that E2 interacts with TopBP1. Removal of the amino-terminal domain of TopBP1 abolishes coactivation of transcription and replication. This interaction may have functional consequences upon the viral life cycle. HPVs1 are causative agents in a number of human diseases the most common of which is cervical cancer (1). More than 95% of cervical carcinomas harbor HPV sequences, and the most frequently detected is HPV16. The HPV16 E2 protein is a 43-kDa phosphoprotein that binds as a homodimer to 12-bp palindromic DNA sequences in the transcriptional control region of the viral genome (2). After binding E2 can either upregulate or repress transcription from the adjacent promoter depending upon cell type and protein levels, and this regulation controls the expression of the viral oncoproteins E6 and E7 (3-6). As well as regulating transcription, E2 interacts with the viral replication factor E1 and recruits it to the origin of replication enhancing the ability of the E1 protein to interact with the origin (7-9). E2 may also have an additional role in replication by recruiting cellular proteins to the replication origin.The E2 protein can be divided into three domains: the amino terminus, which mediates the transcription and replication properties of the protein; the carboxyl terminus, responsible for homodimerization and binding to DNA; and the hinge region between these domains, which is of indeterminate function (10). Several proteins interact with the transactivation domain of E2 including papillomavirus proteins E1 (7-9) and L2 (11, 12), as well as cellular proteins AMF1 (13), TBP (14), TFIIB (15-17), p300/CBP (18), and SMN (19). However, to our knowledge a systematic approach to identify cellular partners for the activation domain of HPV16 E2 has not been carried out. The transcription/replication domain of HPV16 E2 can activate transcription in yeast making a tr...
During papillomavirus infection, the E5 protein localizes in the cell Golgi apparatus and other endomembrane compartments. Cells transformed by E5 do not express major histocompatibility class I complex (MHC I) on the cell surface, while cells transformed by the other transforming proteins E6 and E7 do. In addition, the total amount of both MHC I protein and mRNA is reduced in E5-transformed cells. Here we show that expression of bovine papillomavirus E5 causes the retention of MHC I in the Golgi apparatus, thus preventing its transport to the cell surface. We ascribe this effect to a failure of acidification of the Golgi apparatus, as similar effects are observed in control cells treated with the ionophore monensin. Treatment of E5-transformed cells with either b-or g-interferon increases the synthesis of MHC I, showing that inhibition of MHC I expression by E5 is not irreversible. However, even after interferon treatment, MHC I, although increased in quantity, is not transported to the cell surface. E5 therefore affects MHC I at several levels, but prevention of MHC I transport to the cell surface appears to be the dominant effect. Lack of surface MHC I would have profound consequences for presentation of viral peptides to the immune system.
The papillomavirus E5 protein is localized in the endoplasmic reticulum (ER) and Golgi apparatus (GA) of the host cell. Transformed bovine ®broblasts expressing bovine papillomavirus (BPV) E5 are highly vacuolated and have a much enlarged, distorted and fragmented GA. Major histocompatibility complex class I (MHC I) is processed and transported to the cell surface through the GA. Given the cellular localization of E5 in the GA and the morphologically abnormal GA, we investigated the expression of MHC I in cells transformed by E5 from BPV-1 and BPV-4. Two cell lines were used: bovine cells that also express E6, E7 and activated ras, and NIH3T3 cells that express only E5. In addition, PalF cells acutely infected with a recombinant retrovirus expressing E5 were also examined. In contrast to non-transformed normal cells, or transformed cells expressing other papillomavirus proteins, cells expressing E5 do not express MHC I on their surface, but retain it intracellularly, independently of the presence of other viral or cellular oncogenes, or of whether the cells are long-term transformants or acutely infected. We conclude that expression of E5 prevents expression of MHC I to the cell surface and causes its retention within the cell. In addition, lower amounts of total MHC I heavy chain and of heavy chain RNA are detected in E5-transformed cells than in control cells. As surface expression of another glycosylated membrane protein, the transferrin receptor, is not aected, it appears that E5 targets MHC I with at least a degree of speci®city. In papillomavirus lesions this eect would have important implications for antigen presentation by, and immunosurveillance of, virally infected cells.
Cells from human amniotic fluid derived from the fetus are considered a source of multipotent cells. Their properties have not been fully exploited, partially because unlike other embryonic sources such as embryonic stem (ES) cells, cell lines from amniocentesis samples have not been generated. We have established and characterized the properties of eight individual cell lines. Flow cytometry using several cell surface markers showed that all cell lines generated consisted of homogeneous populations that lack HLAII antigenicity. Using a combination of immunocytochemistry, Western blotting, and RT-PCR, we found weak expression of Oct4 and nestin and strong expression of tubulin-bIII, MAP2, and tau. Specific markers for cholinergic, (nor)adrenergic, and GABAergic neurons or glia were weakly expressed or absent, whereas expression of factors implicated in early induction of dopaminergic neurons, TGF-b3 and b-catenin were present. Further analysis showed strong expression of EN-1, c-RET, PTX3, and NURR1 essential for induction and survival of midbrain dopaminergic neurons, TH, AADC, and VMAT2 components of dopamine synthesis and secretion, and syntaxin1A and SNAP-25 necessary for neurotransmitter exocytosis. This phenotype was retained throughout passages and up to the current passage 36. Expression of neuronal and dopaminergic markers in individual AF cell lines was comparable to expression in neurons induced from ES cells and in IMR-32 and SH-SY5Y neuroblastomas. Our data show that cell lines can be derived from subcultures of amniocentesis, and are primarily composed of a population of progenitors with a phenotype similar to that of committed mesencephalic dopaminergic neurons. V V C 2006 Wiley-Liss, Inc.
Mitotic spindles are highly organized, microtubule (MT)-based, transient structures that serve the fundamental function of unerring chromosome segregation during cell division and thus of genomic stability during tissue morphogenesis and homeostasis. Hence, a multitude of MT-associated proteins (MAPs) regulates the dynamic assembly of MTs in preparation for mitosis. Some tumor suppressors, normally functioning to prevent tumor development, have now emerged as significant MAPs. Among those, neurofibromin, the product of the Neurofibromatosis-1 gene (NF1), a major Ras GTPase activating protein (RasGAP) in neural cells, controls also the critical function of chromosome congression in astrocytic cellular contexts. Cell type- and development-regulated splicings may lead to the inclusion or exclusion of NF1exon51, which bears a nuclear localization sequence (NLS) for nuclear import at G2; yet the functions of the produced NLS and ΔNLS neurofibromin isoforms have not been previously addressed. By using a lentiviral shRNA system, we have generated glioblastoma SF268 cell lines with conditional knockdown of NLS or ΔNLS transcripts. In dissecting the roles of NLS or ΔNLS neurofibromins, we found that NLS-neurofibromin knockdown led to increased density of cytosolic MTs but loss of MT intersections, anastral spindles featuring large hollows and abnormal chromosome positioning, and finally abnormal chromosome segregation and increased micronuclei frequency. Therefore, we propose that NLS neurofibromin isoforms exert prominent mitotic functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.