Internet and communication technologies have lowered the costs to collaborate for communities, leading to new services like user-generated content and social computing and, through collaboration, collectively built infrastructures, such as community networks. Community networks are formed when individuals and local organisations from a geographic area team up to create and run a community-owned IP network to satisfy the community's demand for ICT. Internet access is often considered the main service of community networks, but the provision of services of local interest within the network is a unique opportunity for community networks, which is currently predominantly unexplored. The consolidation of today's cloud technologies offers community networks the possibility to collectively build community clouds, building upon user-provided networks, and extending towards an ecosystem of cloud services. We propose a framework for building a collaborative distributed community cloud system that employs resources contributed by the members of the community network for provisioning infrastructure and software services. This framework is tailored to the specific social, economic, and technical characteristics of community networks and requirements for community clouds in order to be successful and sustainable. We materialise this framework in the implementation of the Cloudy distribution. We conduct real deployments of these clouds in the Guifi.net community network and evaluate cloud-based applications such as service discovery and distributed storage. This deployment experience supports the feasibility of community clouds and our measurements demonstrate the performance of services and applications running in these community clouds. Our results encourage the development and operation of collaborative cloud-based services using the resources of a community network. We anticipate that such services can effectively complement commercial offers and have the potential to boost innovation in application areas in which end-user involvement is required.
Abstract-Citizens develop Wireless Mesh Networks (WMN) in many areas as an alternative or their only way for local interconnection and access to the Internet. This access is often achieved through the use of several shared web proxy gateways. These network infrastructures consist of heterogeneous technologies and combine diverse routing protocols. Network-aware stateof-art proxy selection schemes for WMNs do not work in this heterogeneous environment. We developed a client-side gateway selection mechanism that optimizes the client-gateway selection, agnostic to underlying infrastructure and protocols, requiring no modification of proxies nor the underlying network. The choice is sensitive to network congestion and proxy load, without requiring a minimum number of participating nodes. Extended Vivaldi network coordinates are used to estimate client-proxy network performance. The load of each proxy is estimated passively by collecting the Time-to-First-Byte of HTTP requests, and shared across clients. Our proposal was evaluated experimentally with clients and proxies deployed in guifi.net, the largest community wireless network in the world. Our selection mechanism avoids proxies with heavy load and slow internal network paths, with overhead linear to the number of clients and proxies.
Decentralization, in the form of mesh networking and blockchain, two promising technologies, is coming to the telecommunications industry. Mesh networking allows wider low-cost Internet access with infrastructures built from routers contributed by diverse owners, whereas blockchain enables transparency and accountability for investments, revenue, or other forms of economic compensations from sharing of network traffic, content, and services. Crowdsourcing network coverage, combined with crowdfunding costs, can create economically sustainable yet decentralized Internet access. This means that every participant can invest in resources and pay or be paid for usage to recover the costs of network devices and maintenance. While mesh networks and mesh routing protocols enable self-organized networks that expand organically, cryptocurrencies and smart contracts enable the economic coordination among network providers and consumers. We explore and evaluate two existing blockchain software stacks, Hyperledger Fabric (HLF) and Ethereum geth with Proof of Authority (PoA) intended as a local lightweight distributed ledger, deployed in a real city-wide production mesh network and in laboratory network. We quantify the performance and bottlenecks and identify the current limitations and opportunities for improvement to serve locally the needs of wireless mesh networks, without the privacy and economic cost of relying on public blockchains. KEYWORDS blockchain, Ethereum, Hyperledger Fabric, mesh networks, performance evaluation INTRODUCTIONNetwork infrastructures are critical to provide local and global connectivity that enables access to information, social inclusion, and participation for everyone. Local connectivity largely relies on access networks. Wireless mesh networks (WMNs) are a kind of access networks comprising of wireless nodes, namely wireless mesh routers, wireless mesh clients, and network gateways. A client (connected through WiFi or wired to a mesh router) can access the Internet across a WMN. 1 These are self-organized networks that can grow organically: new network links can expand the coverage of the network or increase the capacity when links get overused. The routing protocol runs in every router by measuring the performance and quality of links and coordinates distributed decisions about the best network paths periodically. As a result, once a routing protocol is adopted, the development and operation of the network only depends on pooling routers and links with local decisions, without any central planning or management.These decentralized networks are essential to develop community access networks, network infrastructure commons, built by citizens and organizations which pool their resources and coordinate their efforts, characterized by being open, free, and neutral. 2 These decentralized access networks have been identified as one way to connect the next billion people that are still without the Internet access. 3 Guifi.net* is an example of such a community effort, which is one of the biggest commun...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.