Several MIR applications require fine-grained note alignments between MIDI performances and their musical scores for training and evaluation. However, large and high-quality datasets with this kind of data are not available, and their manual creation is a very time-consuming task that can only be performed by field experts. In this paper, we evaluate state-of-the-art automatic note alignment models applied to dataset generation. We increase the accuracy and reliability of the produced alignments with models that flexibly leverage existing annotations such as beat or measure alignments. We thoroughly evaluate these segment-constrained models and use the best to create note alignments for the ASAP dataset, a large dataset of solo piano MIDI performances beat-aligned to MusicXML scores. The resulting note alignments are manually checked and publicly available at: https://github.com/CPJKU/ asap-dataset. The contributions of this paper are four-fold: (1) we extend the ASAP dataset with reliable note alignments, thus creating (n)ASAP, the largest available fully note-aligned dataset, comprising more than 7 M annotated notes and close to 100 hours of music; (2) we design, evaluate, and publish segment-constrained models for note alignments that flexibly leverage existing annotations and significantly outperform automatic models; (3) we design, evaluate, and publish unconstrained automatic models for note alignment that produce results on par with the state of the art; (4) we introduce Parangonada, a web-interface for visualizing and correcting alignment annotations.
This paper introduces the ACCompanion, an expressive accompaniment system. Similarly to a musician who accompanies a soloist playing a given musical piece, our system can produce a human-like rendition of the accompaniment part that follows the soloist's choices in terms of tempo, dynamics, and articulation. The ACCompanion works in the symbolic domain, i.e., it needs a musical instrument capable of producing and playing MIDI data, with explicitly encoded onset, offset, and pitch for each played note. We describe the components that go into such a system, from real-time score following and prediction to expressive performance generation and online adaptation to the expressive choices of the human player. Based on our experience with repeated live demonstrations in front of various audiences, we offer an analysis of the challenges of combining these components into a system that is highly reactive and precise, while still a reliable musical partner, robust to possible performance errors and responsive to expressive variations.
Partitura is a lightweight Python package for handling symbolic musical information. It provides easy access to features commonly used in music information retrieval tasks, like note arrays (lists of timed pitched events) and 2D piano roll matrices, as well as other score elements such as time and key signatures, performance directives, and repeat structures. Partitura can load musical scores (in MEI, MusicXML, Humdrum **kern, and MIDI formats), MIDI performances, and score-to-performance alignments. The package includes some tools for music analysis, such as automatic pitch spelling, key signature identification, and voice separation. Partitura is an open-source project and is available at https://github.com/CPJKU/partitura/.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.