We recently introduced the potent gastrin-releasing peptide receptor (GRPR) antagonist 68 Ga-SB3 ( 68 Ga-DOTA-p-aminomethylaniline-diglycolic acid-DPhe-Gln-Trp-Ala-Val-Gly-His-Leu-NHEt), showing excellent tumor localizing efficacy in animal models and in patients. By replacement of the C-terminal Leu 13 -Met 14 -NH 2 dipeptide of SB3 by Sta 13 -Leu 14 -NH 2 , the novel GRPR antagonist NeoBOMB1 was generated and labeled with different radiometals for theranostic use. We herein report on the biologic profile of resulting 67/68 111 In-, and 177 Lu-NeoBOMB1 radioligands in GRPR-expressing cells and mouse models. The first evidence of prostate cancer lesion visualization in men using 68 Ga-NeoBOMB1 and PET/CT is also presented. Methods: NeoBOMB1 was radiolabeled with 67/68 Ga, 111 In, and 177 Lu according to published protocols. The respective metalated species nat Ga-, nat In-, and nat Lu-NeoBOMB1 were also synthesized and used in competition binding experiments against [ 125 I-Tyr 4 ]BBN in GRPRpositive PC-3 cell membranes. Internalization of 67 111 In-, and 177 Lu-NeoBOMB1 radioligands was studied in PC-3 cells at 37°C, and their metabolic stability in peripheral mouse blood was determined by high-performance liquid chromatography analysis of blood samples. Biodistribution was performed by injecting a 67 111 In-, or 177 Lu-NeoBOMB1 bolus (74, 74, or 370 kBq, respectively, 100 mL, 10 pmol total peptide 6 40 nmol Tyr 4 -BBN: for in vivo GRPR blockade) in severe combined immunodeficiency mice bearing PC-3 xenografts. PET/CT images with 68 Ga-NeoBOMB1 were acquired in prostate cancer patients. Results: NeoBOMB1 and nat Ga-, nat In-, and nat LuNeoBOMB1 bound to GRPR with high affinity (half maximal inhibitory concentration, 1-2 nM). 67 111 In-, and 177 Lu-NeoBOMB1 specifically and strongly bound on the cell membrane of PC-3 cells displaying low internalization, as expected for receptor antagonists. They showed excellent metabolic stability in peripheral mouse blood (.95% intact at 5 min after injection). After injection in mice, all 3 ( 67 111 In-, and 177 Lu-NeoBOMB1) showed comparably high and GRPR-specific uptake in the PC-3 xenografts (e.g., 30.6 6 3.9, 28.6 6 6.0, and .35 percentage injected dose per gram at 4 h after injection, respectively), clearing from background predominantly via the kidneys. During a translational study in prostate cancer patients, 68 Ga-NeoBOMB1 rapidly localized in pathologic lesions, achieving high-contrast imaging. Conclusion: The GRPR antagonist radioligands 67 111 In-, and 177 Lu-NeoBOMB1, independent of the radiometal applied, have shown comparable behavior in prostate cancer models, in favor of future theranostic use in GRPR-positive cancer patients. Such translational prospects were further supported by the successful visualization of prostate cancer lesions in men using 68 Ga-NeoBOMB1 and PET/CT.
Recent advances in oncology involve the use of diagnostic/therapeutic radionuclide-carrier pairs that target cancer cells, offering exciting opportunities for personalized patient treatment. Theranostic gastrin-releasing peptide receptor (GRPR)-directed radiopeptides have been proposed for the management of GRPR-expressing prostate and breast cancers. We have recently introduced the PET tracer Ga-SB3 (SB3, DOTA- p-aminomethylaniline-diglycolic acid-DPhe-Gln-Trp-Ala-Val-Gly-His-Leu-NHEt), a receptor-radioantagonist that enables the visualization of GRPR-positive lesions in humans. Aiming to fully assess the theranostic potential of SB3, we herein report on the impact of switchingGa to In/Lu-label on the biological properties of resulting radiopeptides. Notably, the bioavailability of In/Lu-SB3 in mice drastically deteriorated compared with metabolically robust Ga-SB3, and as a result led to poorerIn/Lu-SB3 uptake in GRPR-positive PC-3 xenografts. The peptide cleavage sites were identified by chromatographic comparison of blood samples from mice intravenously receiving In/Lu-SB3 with each of newly synthesized In/Lu-SB3-fragments. Coinjection of the radioconjugates with the neprilysin (NEP)-inhibitor phosphoramidon led to full stabilization of In/Lu-SB3 in peripheral mouse blood and resulted in markedly enhanced radiolabel uptake in the PC-3 tumors. In conclusion, in situ NEP-inhibition led to indistinguishable Ga/In/Lu-SB3 profiles in mice emphasizing the theranostic prospects of SB3 for clinical use.
Background: The GRPR-antagonist-based radioligands [67/68Ga/111In/177Lu]NeoBOMB1 have shown excellent theragnostic profiles in preclinical prostate cancer models, while [68Ga]NeoBOMB1 effectively visualized prostate cancer lesions in patients. We were further interested to explore the theragnostic potential of NeoBOMB1 in GRPR-positive mammary carcinoma, by first studying [67Ga]NeoBOMB1 in breast cancer models; Methods: We investigated the profile of [67Ga]NeoBOMB1, a [68Ga]NeoBOMB1 surrogate, in GRPR-expressing T-47D cells and animal models; Results: NeoBOMB1 (IC50s of 2.2 ± 0.2 nM) and [natGa]NeoBOMB1 (IC50s of 2.5 ± 0.2 nM) exhibited high affinity for the GRPR. At 37 °C [67Ga]NeoBOMB1 strongly bound to the T-47D cell-membrane (45.8 ± 0.4% at 2 h), internalizing poorly, as was expected for a radioantagonist. [67Ga]NeoBOMB1 was detected >90% intact in peripheral mouse blood at 30 min pi. In mice bearing T-47D xenografts, [67Ga]NeoBOMB1 specifically localized in the tumor (8.68 ± 2.9% ID/g vs. 0.6 ± 0.1% ID/g during GRPR-blockade at 4 h pi). The unfavorably high pancreatic uptake could be considerably reduced (206.29 ± 17.35% ID/g to 42.46 ± 1.31% ID/g at 4 h pi) by increasing the NeoBOMB1 dose from 10 pmol to 200 pmol, whereas tumor uptake remained unaffected. Notably, tumor values did not decline from 1 to 24 h pi; Conclusions: [67Ga]NeoBOMB1 can successfully target GRPR-positive breast cancer in animals with excellent prospects for clinical translation.
BackgroundWe have recently shown that treatment of mice with the neutral endopeptidase (NEP) inhibitor phosphoramidon (PA) improves the bioavailability and tumor uptake of biodegradable radiopeptides. For the truncated gastrin radiotracer [111In-DOTA]MG11 ([(DOTA)DGlu10]gastrin(10–17)), this method led to impressively high tumor-to-kidney ratios. Translation of this concept in the clinic requires the use of certified NEP inhibitors, such as thiorphan (TO) and its orally administered prodrug racecadotril (Race). Besides NEP, angiotensin-converting enzyme (ACE) has also been implicated in the catabolism of gastrin analogs. In the present study, we first compared the effects induced by NEP inhibition (using PA, TO, or Race) and/or by ACE inhibition (using lisinopril, Lis) on the biodistribution profile of [111In-DOTA]MG11 in mice. In addition, we compared the efficacy of PA and TO at different administered doses to enhance tumor uptake.Methods[111In-DOTA]MG11 was coinjected with (a) vehicle, (b) PA (300 μg), (c) TO (150 μg), (d) Lis (100 μg), (e) PA (300 μg) plus Lis (100 μg), or (f) 30–40 min after intraperitoneal (ip) injection of Race (3 mg) in SCID mice bearing AR42J xenografts. In addition, [111In-DOTA]MG11 was coinjected with vehicle, or with progressively increasing amounts of PA (3, 30, or 300 μg) or TO (1.5, 15, and 150 μg) in SCID mice bearing twin A431-CCK2R(+/−) tumors. In all above cases, biodistribution was conducted at 4 h postinjection (pi).ResultsDuring NEP inhibition, the uptake of [111In-DOTA]MG11 in the AR42J tumors impressively increased from 1.8 ± 1.0 % ID/g (controls) to 15.3 ± 4.7 % ID/g (PA) and 12.3 ± 3.6 % ID/g (TO), while with Race tumor values reached 6.8 ± 2.8 % ID/g. Conversely, Lis had no effect on tumor uptake and no additive effect when coinjected with PA. During the dose dependence study in mice, PA turned out to be more efficacious in enhancing tumor uptake of [111In-DOTA]MG11 in the CCK2R-positive tumors compared to equimolar amounts of TO. In all cases, renal accumulation remained low, resulting in notable increases of tumor-to-kidney ratios.ConclusionsThis study has confirmed NEP as the predominant degrading enzyme of [111In-DOTA]MG11 and ruled out the involvement of ACE in the in vivo catabolism of the radiotracer. NEP inhibition with the clinically tested NEP inhibitors TO and Race resulted in significant enhancement of tumor-to-kidney ratios vs. controls. However, compared with PA, TO and its prodrug Race induced less potent increases of tumor uptake, highlighting the significance of inhibitor type, administration route, and dose for implementing a first proof-of-principle study in human.Electronic supplementary materialThe online version of this article (doi:10.1186/s13550-015-0158-3) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.