Product Engineering Processes (PEPs) are used for describing complex product developments in big enterprises such as automotive and avionics industries. The Business Process Model Notation (BPMN) is a widely used language to encode interactions among several participants in such PEPs. In this paper, we present SMC4PEPl as a tool to convert graphical representations of a business process using the BPMN standard to an equivalent discrete-time stochastic control process called Markov Decision Process (MDP). To this aim, we first follow the approach described in an earlier investigation to generate a semantically equivalent business process which is more capable of handling the PEP complexity. In particular, the interaction between different levels of abstraction is realized by events rather than direct message flows. Afterwards, SMC4PEPl converts the generated process to an MDP model described by the syntax of the probabilistic model checking tool PRISM. As such, SMC4PEPl provides a framework for automatic verification and validation of business processes in particular with respect to requirements from legal standards such as Automotive SPICE. Moreover, our experimental results confirm a faster verification routine due to smaller MDP models generated from the alternative event-based BPMN models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.