In this paper, we study the existence of multiple positive solutions for boundary value problems of high-order Riemann-Liouville fractional differential equations involving the p-Laplacian operator. Not only new existence conclusions of two positive solutions are obtained by employing functional-type cone expansion-compression fixed point theorem, but also some sufficient conditions for existence of at least three positive solutions are established by applying the Leggett-Williams fixed point theorem. In addition, we demonstrate the effectiveness of the main result by using an example.
Coinfection of Ebola virus and malaria is widespread, particularly in impoverished areas where malaria is already ubiquitous. Epidemics of Ebola virus disease arise on a sporadic basis in African nations with a high malaria burden. An observational study discovered that patients in Sierra Leone's Ebola treatment centers were routinely infected with malaria parasites, increasing the risk of death. In this paper, we study Ebola-malaria coinfections under the generalized Mittag-Leffler kernel fractional derivative. The Banach fixed point theorem and the Krasnoselskii type are used to analyse the model's existence and uniqueness. We discuss the model stability using the Hyers-Ulam functional analysis. The numerical scheme for the Ebolamalaria coinfections using Lagrange interpolation is presented. The numerical trajectories show that the prevalence of Ebolamalaria coinfections ranged from low to moderate depending on memory. This means that controlling the disease requires adequate knowledge of the past history of the dynamics of both malaria and Ebola. The graphical dynamics of the detection rate indicate that a variation in the detection rate only affects the following compartments: individuals that are latently infected with the Ebola, Ebola virus afflicted people who went unnoticed, individuals who have been infected with the Ebola virus and have been diagnosed with the disease, and persons undergoing Ebola virus therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.