Self-healing Ceramic Matrix Composites (CMCs) are good candidates for structural applications at high temperatures in oxidizing environments. These materials generate complex couplings between the thermal and mechanical fields. A multiphysics macroscopic model of both the mechanical behavior and the lifetime of CMC structures was proposed previously and was validated on the material's level. Here, its effectiveness in dealing with structural calculations with heterogeneous fields is analyzed and a non-local fracture criterion is proposed for high-gradient cases. All the simulations were carried out using Abaqus/Standard. The main interest of the model is its ability to predict the evolution of each of the material's mechanisms throughout the structure until final fracture. Another advantage is the ability to predict the fracture zone and the influence of indentations on the lifetime of the structure (damage tolerance analysis), both of which are very important for industrial developments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.