International audienceAt the building scale, the use of green roof has shown a positive impact on urban runoff (decrease and slowdown in peak discharge, decrease in runoff volume). The present work aims to study whether similar effects are possible at the basin scale and what is the minimum spreading of green runoff needed to observe significant impacts. It is particularly focused on the circumstances of such impacts and how they can contribute to storm water management in urban environment. Based on observations on experimental green roofs, a conceptual model has been developed and integrated into the SWMM urban rainfall-runoff model to reproduce the hydrological behaviour of two different types of green roof. It has been combined with a method defining green roofing scenarios by estimating the maximum roof area that can be covered. This methodology has been applied on a long time series (18 years) to the Châtillon urban basin (Haut-de-Seine county, France) frequently affected by urban flooding. For comparison, the same methodology has been applied at the building scale and a complementary analysis has been conducted to study which hydrometeorological variables may affect the magnitude of these hydrological impacts at both scales. The results show green roofs, when they are widely implemented, can affect urban runoff in terms of peak discharge and volume, and avoid flooding in several cases. Both precipitation – generally accumulated during the whole event-and the initial substrate saturation are likely to have an impact on green roof effects. In this context, the studied green roofs seem useful to mitigate the effects of usual rainfall events but turn out being less helpful for the more severe ones. We conclude that, combined with other infrastructures, green roofs represent an interesting contribution to urban water management in the future
Abstract:Runoff on impervious surfaces (roads, roofs, etc.) raises a number of environmental and road safety-related problems. The primary objective of this research effort is to improve our knowledge of the hydrological behaviour of impervious urban surfaces in order to better assess runoff on these surfaces and its subsequent consequences. This article will focus on two street stretches studied over a 38-month period. Measurements of rainfall and runoff discharge on these stretches have made it possible to estimate runoff losses as well as to constitute a database for modelling purposes. On the basis of these data, two models have been used, one simple the other more detailed and physically based. For both models, runoff discharges at a 3-min time step are well reproduced, although runoff coefficients and runoff losses are still poorly estimated. Detailed analyses of experimental data and model output, however, indicate that runoff losses could be quite high on such 'impervious surfaces' (between 30 and 40% of total rainfall, depending on the street stretch) and that these losses are mainly because of evaporation and infiltration inside the road structure.
Over the last decade, a growing interest has been shown toward innovative stormwater management practices, breaking away from conventional "end of pipe" approaches (based on conveying water offsite to centralized detention facilities). Innovative strategies, referred to as sustainable urban drainage systems, low impact development (LID) or green infrastructures, advocating for management of runoff as close to its origin as possible, have therefore gained a lot of popularity among practitioners and public authorities. However, while the need for pollution control is generally well accepted, there is no wide agreement about management criteria to be given to developers. This article hence aims to compare these criteria through literature analysis of different state or local stormwater management manuals or guidelines, investigating both their suitability for pollution control and their influence on best management practices selection and design. Four categories of criteria were identified: flow-rate limitations, "water quality volumes" (to be treated), volume reduction (through infiltration or evapotranspiration), and non-hydrologic criteria (such as loads reduction targets or maximum effluent concentrations). This study suggests that hydrologic criteria based on volume reduction (rather than treatment) might generally be preferable for on-site control of diffuse stormwater pollution. Nonetheless, determination of an appropriate management approach for a specific site is generally not straightforward and presents a variety of challenges for site designers seeking to satisfy local requirements in addressing stormwater quantity and quality issues. The adoption of efficient LID solution may therefore strongly depend on the guidance given to practitioners to account for these management criteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.