Monitoring of dune erosion and accretion on the high-energy macrotidal Vougot beach in North Brittany (France) over the past decade (2004)(2005)(2006)(2007)(2008)(2009)(2010)(2011)(2012)(2013)(2014) has revealed significant morphological changes. Dune toe erosion/accretion records have been compared with extreme water level measurements, defined as the sum of (i) astronomic tide; (ii) storm surge; and (iii) vertical wave runup. Runup parameterization was conducted using swash limits, beach profiles, and hydrodynamic (Hm0, Tm0,-1, and high tide water level-HTWL) data sets OPEN ACCESS J. Mar. Sci. Eng. 2015, 3 675 obtained from high frequency field surveys. The aim was to quantify in-situ environmental conditions and dimensional swash parameters for the best calibration of Battjes [1] runup formula. In addition, an empirical equation based on observed tidal water level and offshore wave height was produced to estimate extreme water levels over the whole period of dune morphological change monitoring. A good correlation between this empirical equation (1.01Hmoξo) and field runup measurements (Rmax) was obtained (R 2 85%). The goodness of fit given by the RMSE was about 0.29 m. A good relationship was noticed between dune erosion and high water levels when the water levels exceeded the dune foot elevation. In contrast, when extreme water levels were below the height of the toe of the dune sediment budget increased, inducing foredune recovery. These erosion and accretion phases may be related to the North Atlantic Oscillation Index.
International audienceBetween December 2013 and March 2014, a cluster of about 12 storm events hit the coast of Brittany with an exceptional frequency. It was in February that these storm events were the most frequent and particularly virulent. The significant wave heights measured off Finistère reached respectively 12.3 m and 12.4 m during Petra and Ulla storms on February 5 and 14. However, analysis of hydrodynamic conditions shows that only three episodes promoted extreme morphogenetic conditions because they were combined with high spring tide level. The first one occurred on January 1rst to 4, it was followed by events from February 1rst to 3, and March 2-3. During these three extreme events observed tide levels were above highest astronomical tide level (HAT). Maximum surge level (0.97m) was reached during Ulla storm of February 14-15. For comparison, we must go back in the winter of 1989-90 to find such extreme storm frequency. High frequency topomorphological measurements were achieved on more than ten coastal zones distributed around Brittany peninsula to assess the effects of these storms on shoreline erosion. They show that during the first phase (December-January), meeting it's climax from 1rst to 4th January 2014, shoreline erosion has been limited, with the exception of southern Brittany. This is due to the SW orientation of waves. For all monitoring sites, it has averaged -2.7m, the averaged minimum equal to 0.6m, and the averaged maximum at -6.20m. During the second phase from mid-January to mid-February, reaching it's climax on 1-2 of February storm corresponding to the most morphogenetic event of the winter, the average of shoreline retreat reached -4.2m, the averaged minimum reached approximately -1.5m, the averaged maximum -9.5m. It is essentially the Northern and Western coast of Brittany that experienced largest shoreline retreat due to W-NW storm wave orientation. During the third and last phase, running from mid-February to mid-March, and characterized by the March 2-3 extreme morphogenetic event, shoreline retreat was very low. It reaches -1m on average, for an averaged minimum of -0.6m and an averaged minimum of -1.9m. Considering the whole winter 2013-14 period, shoreline erosion for all monitoring sites reached -6.3m on average, with a minimum of about -0.2 m and a maximum of -30.1m. Depending on the type of environment, it appears that the dunes have retreated the most, followed by gravel or sandy barriers; the lowest erosion rates concern beaches backed by low cliffs cut in highly consistent materials such as periglacial deposits (head). Considering the three morphogenous episodes, the morphological response in terms of shoreline retreat of beaches and barriers was different. Storm occurring at the beginning of February induced the largest erosive rates partly explained by the large morphological sensitivity of beaches and barriers which were weakened by the previous storm events in the beginning of January. Conversely, the storm of March induced very few impacts. These elements show...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.