Let K 1 be a parameter. A K-approximate group is a finite set A in a (local) group which contains the identity, is symmetric, and such that A · A is covered by K left translates of A.The main result of this paper is a qualitative description of approximate groups as being essentially finite-by-nilpotent, answering a conjecture of H. Helfgott and E. Lindenstrauss. This may be viewed as a generalisation of the Freiman-Ruzsa theorem on sets of small doubling in the integers to arbitrary groups.We begin by establishing a correspondence principle between approximate groups and locally compact (local) groups that allows us to recover many results recently established in a fundamental paper of Hrushovski. In particular we establish that approximate groups can be approximately modeled by Lie groups.To prove our main theorem we apply some additional arguments essentially due to Gleason. These arose in the solution of Hilbert's fifth problem in the 1950s.Applications of our main theorem include a finitary refinement of Gromov's theorem, as well as a generalized Margulis lemma conjectured by Gromov and a result on the virtual nilpotence of the fundamental group of Ricci almost nonnegatively curved manifolds.Résumé. Soit K 1 un paramètre. On appelle groupe K-approximatif toute partie finie A d'un groupe (ou d'un groupe local) qui est symétrique, contient l'identité et est telle que A · A peutêtre recouvert par au plus K translatésà gauche de A.Le résultat principal de cet article montre que tout groupe approximatif est, grossièrement, finipar-nilpotent, ce qui répond par l'affirmativeà une conjecture de H.Helfgott et de E.Lindenstrauss.On peut interpréter ce théorème comme une généralisationà un groupe quelconque du théorème de Freiman-Ruzsa sur la structure des parties finiesà petit doublement du groupe additif des entiers relatifs.Nous commençons parétablir un principe de correspondence entre les groupes approximatifs et les groupes (ou groupes locaux) localement compacts, puis nous en déduisons de nombreuses conséquences issues d'un important article récent de Hrushovski. En particulier, nous montrons que tout groupe approximatif peut-être représenté par un groupe de Lie.Pour démontrer notre théorème principal, nous appliquons des arguments, en substance dusà Gleason pour la plupart, qui ont vus le jour dans le contexte de la solution du cinquième problème de Hilbert dans les années 50.En guise d'application du théorème principal, nous montrons une version fine du théorème de Gromov, ainsi qu'un lemme de Margulis généralisé conjecturé par Gromov, et un résultat sur la presque nilpotence des groupes fondamentaux des variétésà courbure de Ricci presque positive.
We establish various results on the structure of approximate subgroups in linear groups such as SL n (k) that were previously announced by the authors. For example, generalising a result of Helfgott (who handled the cases n = 2 and 3), we show that any approximate subgroup of SL n (F q ) which generates the group must be either very small or else nearly all of SL n (F q ). The argument generalises to other absolutely almost simple connected (and non-commutative) algebraic groups G over an arbitrary field k and yields a classification of approximate subgroups of G(k). In a subsequent paper, we will give applications of this result to the expansion properties of Cayley graphs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.