We present a review of coherent-vortex dynamics obtained thanks to large-eddy simulations (LES) associated with simple and effective vortexidentification and animation techniques. LES of a large class of constant-density or weakly compressible three-dimensional flows have been carried out. In isotropic turbulence, we present the formation and evolution of spaghetti-type vortices, seen thanks to Q, vorticity and pressure, together with the time evolution of the kinetic energy, enstrophy and skewness. In a spatially growing boundary layer on a flat plate, one observes during transition big Λ vortices lying on the wall (with very well correlated oblique induced low-and high-speed streaks) shedding smaller hairpin vortices around their tips. In the developed boundary layer, we show animations of the purely longitudinal low-and high-speed streaks, as well as animations of low-pressure regions. In a backwards-facing step, we examine the influence of upstream conditions upon the flow structure, by comparing two inflow conditions: a white noise superposed on a mean velocity profile and a realistic turbulent boundary layer. The latter three-dimensionalizes the flow downstream of the step and reduces the reattachment length. In both cases big staggered arch vortices form, impinge the lower wall and are carried away downstream. In a two-dimensional (2D) square cavity, spanwisely oriented vortices are shed behind the upstream edge, and impinge the downstream edge, transforming into arch vortices very similar to the back-step case. These arch vortices are also found behind a 2D rectangular obstacle with wall effect. We discuss the relevance of the vortices found with respect to reality. All these eddies are very important in terms of drag and noise reduction in aerodynamics and aeroacoustics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.