Background Antimicrobial resistance has emerged as a global health threat. Antimicrobial resistant Escherichia coli infections are associated with high morbidity and expenditure when compared with infections caused by susceptible strains. In Nigeria, antimicrobial drugs are readily available over-the-counter with potential for indiscriminate use by poultry farmers and eventual development of drug resistance. The objective of this study was to investigate prevalence and risk factors for multi-drug resistant E. coli among poultry workers (PW) in Abuja, Nigeria. Materials and methods A cross-sectional study was conducted among 122 randomly selected apparently healthy poultry workers (poultry-farmers/ sellers) in Municipal and Kuje Area Councils from December 2018 to April 2019. Data was collected on socio-demographics and exposure factors using a structured interviewer-administered questionnaire. E. coli was isolated and identified from stool samples of poultry workers. Antibiotic susceptibility testing was done using Kirby-Bauer disk diffusion method. Multidrug resistance (MDR) was defined as resistance to three or more classes of antimicrobials. Data was analyzed by computing proportions, prevalence odds-ratios (POR) and logistic regression at 5% significance level. Results Among PW, there were 121 males (99.2%). Mean age of the male workers was 30.6 ± 9.7years, 54.6% (n = 66) married, 57.9% (n = 70) had secondary education and 62.0%
IntroductionBrucellosis, a neglected debilitating zoonosis, is a recognized occupational hazard with a high prevalence in developing countries. Transmission to humans can occur through contact with infected animals or animal products. Brucellosis presents with fever. In Nigeria, there is a possibility of missed diagnoses by physicians leading to a long debilitating illness. We conducted a study to determine the seroprevalence and factors associated with Human Brucellosis (HB) among abattoir-workers in Abuja, Nigeria.MethodsWe conducted a cross-sectional study and selected abattoir-workers using stratified random sampling. Structured questionnaires were used to collect data on demographics and exposure-factors. We tested the workers’ serum-samples using Rose-Bengal (RBPT) and ELISA tests. A worker with HB was one whose serum tested positive to RBPT or ELISA. We tested differences in proportions between workers with HB and those without HB using odds-ratio and X2 tests.ResultsOf 224 workers, 172 (76.8%) were male and mean age was 30 + 9.0 years. Of 224 sera collected, 54 were positive giving a seroprevalence of 24.1%. Of these, 32 (59.3%) were butchers, and 11 (20.4%) were meat-sellers. Slaughtering animals while having open-wounds (Odds-ratio (OR) = 2.15, 95% Confidence Interval (CI) = 1.15-4.04); occupational-exposure of >5years (OR = 2.30, CI = 1.11-4.78) and eating raw meat (OR = 2.75, CI = 1.21-6.26) were significantly associated with HB. Multivariate analyses showed that occupational-exposure of >5years (Adjusted OR (AOR) =2.45, CI = 1.15 – 5.30) and eating raw-meat (AOR = 2.64, CI = 1.14 - 6.14) remained significantly associated with HB.ConclusionSeroprevalence of HB among abattoir-workers in Abuja was high. Factors associated with HB were occupational-exposure of >5years and eating raw-meat. Abattoir-workers should be discouraged from eating raw-meat and educated on adherence to safe animal-product handling practices.
Background Inappropriate use of antimicrobial agents in animal production has led to the development of antimicrobial resistance (AMR) in foodborne pathogens. Transmission of AMR foodborne pathogens from reservoirs, particularly chickens to the human population does occur. Recently, we reported that occupational exposure was a risk factor for multidrug-resistant (MDR) Escherichia coli (E. coli) among poultry-workers. Here we determined the prevalence and genetic relatedness among MDR E. coli isolated from poultry-workers, chickens, and poultry environments in Abuja, Nigeria. This study was conducted to address the gaps identified by the Nigerian AMR situation analysis. Methods We conducted a cross-sectional study among poultry-workers, chickens, and poultry farm/live bird market (LBM) environments. The isolates were tested phenotypically for their antimicrobial susceptibility profiles, genotypically characterized using whole-genome sequencing (WGS) and in silico multilocus sequence types (MLST). We conducted a phylogenetic single nucleotide polymorphism (SNPs) analysis to determine relatedness and clonality among the isolates. Results A total of 115 (26.8%) out of 429 samples were positive for E. coli. Of these, 110 isolates were viable for phenotypic and genotypic characterization. The selection comprised 47 (42.7%) isolates from poultry-workers, 36 (32.7%) from chickens, and 27 (24.5%) from poultry-farm or LBM environments. Overall, 101 (91.8%) of the isolates were MDR conferring resistance to at least three drug classes. High frequency of resistance was observed for tetracycline (n = 102; 92.7%), trimethoprim/sulfamethoxazole (n = 93; 84.5%), streptomycin (n = 87; 79.1%) and ampicillin (n = 88; 80%). Two plasmid-mediated colistin genes—mcr-1.1 harboured on IncX4 plasmids were detected in environmental isolates. The most prevalent sequence types (ST) were ST-155 (n = 8), ST-48 (n = 8) and ST-10 (n = 6). Two isolates of human and environmental sources with a SNPs difference of 6161 originating from the same farm shared a novel ST. The isolates had similar AMR genes and plasmid replicons. Conclusion MDR E.coli isolates were prevalent amongst poultry-workers, poultry, and the poultry farm/LBM environment. The emergence of MDR E. coli with novel ST in two isolates may be plasmid-mediated. Competent authorities should enforce AMR regulations to ensure prudent use of antimicrobials to limit the risk of transmission along the food chain.
Background Globally, chicken is known to be a reservoir for the spread of antimicrobial resistance genes to humans. In Nigeria, antimicrobial drugs are readily accessible for use in poultry production, either for preventive or therapeutic purposes. Extended-spectrum beta-lactamase-producing Escherichia coli (ESBL-EC) are transmissible to humans because of their zoonotic potentials. People working very closely with chickens either on farms or markets are at greater risk. The aim of this study was to investigate the prevalence and zoonotic transmission of ESBL-EC among poultry-workers, chickens, and poultry environments in Abuja, Nigeria. Methods We conducted a cross-sectional study among workers, chickens and poultry environment in selected farms/chicken markets in Abuja. Stool, faecal, and environmental samples were collected from apparently healthy workers, chickens, and farm/market environments from December 2018 to April 2019. Data were collected electronically using an open data kit (ODK) installed on a Smartphone. Antimicrobial resistance was determined using broth micro-dilution methods against a panel of 14 antimicrobial agents. We carried out the phenotypic and genotypic characterization of the isolates. Data were analyzed by computing frequencies, proportions and spearman’s correlation (ρ). Results Of 429 samples, 26.8% ( n = 115) were positive for Escherichia coli (E. coli) . Of the 115 E. coli isolates, 32.2% ( n = 37) were confirmed ESBL producers by phenotypic characterization. Prevalence of ESBL-EC was highest among both poultry-workers (37.8%; n = 14) and chickens (37.8%; n = 14) followed by the environment (24.3%; n = 9). Both human and chicken isolates showed similar patterns of multidrug resistance to tested antimicrobials with a positive correlation (ρ = 0.91). Among ESBL producers, we observed the dissemination of bla CTX-M (10.8%; n = 4) genes. The coexistence of bla CTX-M-15 and bla TEM-1 genes was observed in 8.1% ( n = 3) of the isolates, out of which (66.7%; n = 2) were chicken isolates from the farm, while a single human isolate was from the chicken market. Conclusions ESBL-EC isolates were prevalent amongst apparently healthy individuals, chickens and the poultry farm/market environment in Abuja. It is important to educate healthcare workers that people in proximity with poultry are a high-risk group for faecal carriage of ESBL-EC, hence pose a higher risk to the general population for the spread of antimicrobial resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.