Primary production must constrain the amount of fish and invertebrates available to expanding fisheries; however the degree of limitation has only been demonstrated at regional scales to date. Here we show that phytoplanktonic primary production, estimated from an ocean-colour satellite (SeaWiFS), is related to global fisheries catches at the scale of Large Marine Ecosystems, while accounting for temperature and ecological factors such as ecosystem size and type, species richness, animal body size, and the degree and nature of fisheries exploitation. Indeed we show that global fisheries catches since 1950 have been increasingly constrained by the amount of primary production. The primary production appropriated by current global fisheries is 17-112% higher than that appropriated by sustainable fisheries. Global primary production appears to be declining, in some part due to climate variability and change, with consequences for the near future fisheries catches.
European eel decline is now widely observed and involves a large number of factors such as overfishing, pollution, habitat loss, dam construction, river obstruction, parasitism and environmental changes. In the present study, we analyzed the influence of environmental conditions in the Sargasso Sea and Atlantic ocean circulation on European glass eel recruitment success. Over a recent 11-yr period, we showed a strong positive correlation between an original index of glass eel recruitment and primary production (PP) in eel spawning area. Moreover, PP was negatively correlated with temperature in the Sargasso Sea. Therefore, we used sea temperature as an inverse proxy of marine production. A close negative relationship has been found over the last four decades between long-term fluctuations in recruitment and in sea temperature. These findings were reinforced by the detection of a regime shift in sea temperature that preceded the start of the decline in glass eel recruitment in the early 1980s. By contrast, variations in integrative indices measuring ocean circulation, i.e. latitude and strength of the Gulf Stream, did not seem to explain variations in glass eel recruitment. Our results support the hypothesis of a strong bottom-up control of leptocephali survival and growth by PP in the Sargasso Sea on short and long time scales. We argue that sea warming in the eel spawning area since the early 1980s has modified marine production and eventually affected the survival rate of European eels at early life stages.
Glass eel abundances are declining worldwide. This has mostly been attributed to direct impacts of human activities such as overfishing or habitat loss and degradation, whilst the potential influence of changes in oceanic conditions has received less attention. Eel are characterized by a complex and still enigmatic life cycle that includes a trans-oceanic spawning and larval migration. The apparent synchrony in the decline of eel populations worldwide suggests that the oceanic mechanisms involved are similar for all populations. We analyse the relationships between oceanic conditions in eel spawning areas and glass eel recruitment success of the 3 most commercially important species of the genus Anguilla: A. anguilla, A. rostrata, and A. japonica. We provide evidence that the survival of eel larvae is strongly correlated with food availability during their early life stages. Over the last 4 decades, changes in the marine production related to global warming may have led to the decline of European, American and Japanese eel populations. In the Pacific and Atlantic Oceans, the shifts in the temperature regime detected in the late 1970s were followed by shifts in the recruitment regime of glass eel for the 3 species. The decrease in primary production through climate-driven processes has therefore affected the recruitment of eel populations.
Effective use of spatial management in the pelagic realm presents special challenges due to high fish and fisher mobility, limited knowledge and significant governance challenges. The tropical Indian Ocean provides an ideal case study for testing our ability to apply existing data sources to assessing impacts of spatial management on tuna fisheries because of several recent controversial spatial closures. We review the scientific underpinnings of pelagic MPA effects, spatio-temporal patterns of Indian Ocean tuna catch, bycatch and fish movements, and the consequences of these for the efficacy of spatial management for Indian Ocean tropical tuna fisheries. The tropical Indian Ocean is characterized by strong environmental fluctuations, regular seasonal variability in catch, large observed tuna displacement distances, relatively uniform catch-per-unit-effort and bycatch rates over space, and high fisher mobility, all of which suggest significant variability and movement in tropical tuna fisheries that are simply not well adapted to static spatial closures. One possible exception to this overall conclusion would be a large time/area closure east of Somalia. If closed for a significant fraction of the year it could reduce purse-seine bycatch and juvenile tuna catch. Dynamic closures following fish migratory patterns are possible, but more focused information on fish movements will be needed for effective implementation. Fortunately, several recent improvements in conventional fishery management and reporting will likely enhance our ability to evaluate spatial and non-spatial management options in the near future, particularly as pertaining to bycatch species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.