Global attention has been drawn to exploiting the potentials of renewable energy systems, especially their hybrid configurations, due to sustainability issues and climatic impact associated with the use of fossil fuels. Power management in such hybrid renewable energy systems is still a progressive research. Many power control solutions have been proposed. However, much of them lack validation. This work was done to validate a proposed novel intelligent power management scheme based on fuzzy logic control. The controller, designed by a group of researchers, was validated by adapting it to a hybrid renewable energy system, and simulating test case scenarios to validate the functionality claims of the controller. For each test case, the controller was confirmed to emulate expert decisions. The novel fuzzy logic controller was thus validated and the claims of the authors verified.
A significant number of object detection models have been researched for use in plant detection. However, deployment and evaluation of the models for real-time detection as well as for crop counting under varying real field conditions is lacking. In this work, two versions of a state-of-the-art object detection model—YOLOv5n and YOLOv5s—were deployed and evaluated for cassava detection. We compared the performance of the models when trained with different input image resolutions, images of different growth stages, weed interference, and illumination conditions. The models were deployed on an NVIDIA Jetson AGX Orin embedded GPU in order to observe the real-time performance of the models. Results of a use case in a farm field showed that YOLOv5s yielded the best accuracy whereas YOLOv5n had the best inference speed in detecting cassava plants. YOLOv5s allowed for more precise crop counting, compared to the YOLOv5n which mis-detected cassava plants. YOLOv5s performed better under weed interference at the cost of a low speed. The findings of this work may serve to as a reference for making a choice of which model fits an intended real-life plant detection application, taking into consideration the need for a trade-off between of detection speed, detection accuracy, and memory usage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.