BackgroundPredicting mortality in the intensive care unit (ICU) is one of the biggest challenges in critical care medicine. Several studies have linked the presence of eosinopenia with adverse outcomes in different populations.MethodsWe performed a case control study to determine whether the eosinophil count at ICU admission was a predictor of hospital mortality. We included data from patients 18 years or older admitted to the medical or surgical ICU in a university hospital in northern of Mexico. Medical records of 86 non-survivors (cases) and 99 discharged alive patients (controls) were randomly reviewed; clinical records of patients with an ICU stay of less than 24 h and those whose information was incomplete were excluded.ResultsMedian of eosinophil count at ICU admission was 0.013 (interquartile range (IQR) 0.00 to 0.57) K/μL. There was no significant statistical difference in eosinophils at admission between survivors and non-survivors (0.014 [IQR 0.00 to 0.36] vs. 0.010 [IQR 0.00 to 0.57] K/μL, P = 0.35). In the multivariate analysis, APACHE II score at ICU admission and discharge were the only mortality predictors. Survivors had a significantly greater increase in eosinophil count during the first 7 days of ICU stay (0.104 [IQR −0.64 to 0.41] vs. 0.005 [IQR −1.79 to 0.43] K/μL, P = 0.004).ConclusionsIn our study, eosinophil count at ICU admission was not associated with increased hospital mortality. The larger increase in number of eosinophils observed during the first week of ICU stay in surviving patients deserves to be investigated further.
Background:The prevalence of Parkinson's disease (PD) increases as the population ages. Studies have shown that some cardiometabolic comorbidities could be associated with risk or protection against developing PD. A retrospective case-control study was carried out to analyze the relationship between PD and cardiometabolic comorbidities. Material and methods: Subjects with PD and controls without PD were consecutively recruited. Data on type 2 diabetes mellitus, systemic arterial hypertension (SAH), dyslipidemia and body mass index were collected. Logistic regression analyses were carried out.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.