The dissipation rate, εθ, of a passive scalar (temperature in air) emitted from a concentrated source into a fully developed high-aspect-ratio turbulent channel flow is studied. The goal of the present work is to investigate the return to isotropy of the scalar field when the scalar is injected in a highly anisotropic manner into an inhomogeneous turbulent flow at small scales. Both experiments and direct numerical simulations (DNS) were used to study the downstream evolution of εθ for scalar fields generated by line sources located at the channel centreline (ys/h = 1.0) and near the wall (ys/h = 0.17). The temperature fluctuations and temperature derivatives were measured by means of a pair of parallel cold-wire thermometers in a flow at Reτ = 520. The DNS were performed at Reτ = 190 using a spectral method to solve the continuity and Navier-Stokes equations, and a flux integral method (Germaine, Mydlarski & Cortelezzi, J. Comput. Phys., vol. 174, 2001, pp. 614-648) for the advection-diffusion equation. The statistics of the scalar field computed from both experimental and numerical data were found to be in good agreement, with certain discrepancies that were attributable to the difference in the Reynolds numbers of the two flows. A return to isotropy of the small scales was never perfectly observed in any region of the channel for the downstream distances studied herein. However, a continuous decay of the small-scale anisotropy was observed for the scalar field generated by the centreline line source in both the experiments and DNS. The scalar mixing was found to be more rapid in the near-wall region, where the experimental results exhibited low levels of small-scale anisotropy. However, the DNS, which were performed at lower Reτ, showed that persistent anisotropy can also exist near the wall, independently of the downstream location. The role of the mean velocity gradient in the production of εθ (and therefore anisotropy) in the near-wall region was highlighted
Local isotropy of passive scalars in fully developed turbulent channel flow is studied by way of direct numerical simulations. We observe a persistent small-scale anisotropy that (i) persists after the flow has undergone substantial mixing and (ii) is independent of the original large-scale anisotropic initial conditions of the scalar field. This latter observation is in sharp contrast with the persistent local anisotropy observed in homogeneous, isotropic turbulence with imposed mean scalar gradients, for which the small-scale anisotropy is directly correlated to the imposed large-scale anisotropy by way of ramp-cliff structures. The anisotropy observed in the present work is linked to the production of ε θ due to the mean velocity gradient. A major implication of the work is that local isotropy of passive scalar fields may never hold in flows in which mean velocity gradients exist, even after mean scalar gradients have been eliminated by the turbulence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.