Glutathione contributes to thiol-redox control and to extra-mitochondrial iron-sulphur cluster (ISC) maturation. To determine the physiological importance of these functions and sort out those that account for the GSH requirement for viability, we performed a comprehensive analysis of yeast cells depleted of or containing toxic levels of GSH. Both conditions triggered an intense iron starvation-like response and impaired the activity of extra-mitochondrial ISC enzymes but did not impact thiol-redox maintenance, except for high glutathione levels that altered oxidative protein folding in the endoplasmic reticulum. While iron partially rescued the ISC maturation and growth defects of GSH-depleted cells, genetic experiments indicated that unlike thioredoxin, glutathione could not support by itself the thiol-redox duties of the cell. We propose that glutathione is essential by its requirement in ISC assembly, but only serves as a thioredoxin backup in cytosolic thiol-redox maintenance. Glutathione-high physiological levels are thus meant to insulate its cytosolic function in iron metabolism from variations of its concentration during redox stresses, a model challenging the traditional view of it as prime actor in thiol-redox control.
Chromate is a widespread pollutant as a waste of human activities. However, the mechanisms underlying its high toxicity are not clearly understood. In this work, we used the yeast Saccharomyces cerevisiae to analyse the physiological effects of chromate exposure in a eukaryote cell model. We show that chromate causes a strong decrease of sulfate assimilation and sulfur metabolite pools suggesting that cells experience sulfur starvation. As a consequence, nearly all enzymes of the sulfur pathway are highly induced as well as enzymes of the sulfur-sparing response such as Pdc6, the sulfur-poor pyruvate decarboxylase. The induction of Pdc6 was regulated at the mRNA level and dependent upon Met32, a coactivator of Met4, the transcriptional activator of the sulfur pathway. Finally, we found that chromate enters the cells mainly through sulfate transporters and competitively inhibits sulfate uptake. Also consistent with a competition between the two substrates, sulfate supplementation relieves chromate toxicity. However, the data suggest that the chromate-mediated sulfur depletion is not simply due to this competitive uptake but would also be the consequence of competitive metabolism between the two compounds presumably at another step of the sulfur assimilation pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.