International audienceIn order to study further the genetic structure of the pearl oyster Pinctada margaritifera in French Polynesia with a special consideration for the sampling scale, we analyzed or re-analyzed sets of data based on nuclear DNA markers obtained at different spatial scales. At a large scale (several 1,000 km), the remote Marquesas Islands were confirmed to be significantly differentiated from Tuamotu-Gambier and Society archipelagos, with a marked difference however for the two main islands that are different from each other. At a medium scale (several 10 to several 100 km), overall homogeneity was observed within and between these two archipelagos, with some exceptions. This could be attributed both to large-scale larval dispersal and to human-driven spat translocations due to pearl oyster cultivation. These results contrast with those observed (1) at a small scale (less than 10 km) in a lagoon heavily impacted by translocation and cultural practices, where significant genetic differentiation was detected among three laying beds, and (2) at a micro scale where we detected an important variability of the genetic composition of young spat recruited on artificial collectors. Such patterns could result from a high variance in the number of genitors at the origin of each cohort, or from pre- or post-settlement selection on linked loci. Altogether, our data support the hypothesis that under certain conditions populations of bivalves may exhibit patterns of chaotic genetic patchiness at local scale, in line with the increasing report of such patchiness in marine benthic organisms. This underlines the importance of sampling scale that should be rigorously defined depending on the questions to be answered. Nevertheless, a survey of about 80 articles dealing with population genetics of marine invertebrates showed that only 35% of those studies disclosed details about the sampling strategy (particularly the area explored). These results emphasize the need for cautious interpretation of patterns of genetic structure at medium scale when rigorous sampling strategies are not deployed
Most bivalves species of the genus Pinctada are well known throughout the world for production of white or black pearls of high commercial value. For cultured pearl production, a mantle allograft from a donor is implanted into the gonad of a recipient oyster, together with a small inorganic bead. Because of the dedifferentiation of cells during the first steps of the host oyster's immunological reaction, so far the fate of the graft and its exact role in the process of pearl formation could not be determined via classical histological methods. Here we report the first molecular evidence of the resilience of the graft in the recipient organism by showing that cells containing genome from the donor are still present at the end of pearl formation. These results suggest the existence of a unique biological cooperation leading to the successful biomineralization process of nacreous secretion in pearl formation.
Understanding of antimicrobial defence mechanisms of penaeid shrimp should help in the design of efficient strategies for the management and disease control in aquaculture. In this study, we have specifically analysed the expression in circulating hemocytes of antimicrobial peptides (AMPs) encoding genes, such as PEN2 and PEN3, ALF, crustin, lysozyme and a putative cysteine-rich peptide. We evidenced a relationship between the level of expression of some AMPs and the successful response of the shrimp, Litopenaeus stylirostris, to circumvent a pathogenic Vibrio penaeicida infection. Additionally, significant differences in some AMP transcript amounts are evidenced between control, non-selected shrimp line and the third generation breeding of shrimp selected for their survival to natural V. penaeicida infections. On the basis of these results, it will now be of great interest to determine if these AMPs are directly involved in the resistance of shrimp to infection or if they only reflect other acquired defence mechanisms which can confer a resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.