Vision based localization is widely investigated for the autonomous navigation and robotics. One of the basic steps of vision based localization is the extraction of interest points in images that are captured by the embedded camera. In this paper, SIFT and SURF extractors were chosen to evaluate their performance in localization. Four street view image sequences captured by a mobile mapping system, were used for the evaluation and both SIFT and SURF were tested on different image scales. Besides, the impact of the interest point distribution was also studied. We evaluated the performances from for aspects: repeatability, precision, accuracy and runtime. The local bundle adjustment method was applied to refine the pose parameters and the 3D coordinates of tie points. According to the results of our experiments, SIFT was more reliable than SURF. Apart from this, both the accuracy and the efficiency of localization can be improved if the distribution of feature points are well constrained for SIFT.
ABSTRACT:This paper proposes an hybrid online calibration method for a laser scanner mounted on a mobile platform also equipped with an imaging system. The method relies on finding the calibration parameters that best align the acquired points cloud to the images. The quality of this intermodal alignment is measured by Mutual information between image luminance and points reflectance. The main advantage and motivation is ensuring pixel accurate alignment of images and point clouds acquired simultaneously, but it is also much more flexible than traditional laser calibration methods.
ABSTRACT:Vision based localization is widely investigated for the autonomous navigation and robotics. One of the basic steps of vision based localization is the extraction of interest points in images that are captured by the embedded camera. In this paper, SIFT and SURF extractors were chosen to evaluate their performance in localization. Four street view image sequences captured by a mobile mapping system, were used for the evaluation and both SIFT and SURF were tested on different image scales. Besides, the impact of the interest point distribution was also studied. We evaluated the performances from for aspects: repeatability, precision, accuracy and runtime. The local bundle adjustment method was applied to refine the pose parameters and the 3D coordinates of tie points. According to the results of our experiments, SIFT was more reliable than SURF. Apart from this, both the accuracy and the efficiency of localization can be improved if the distribution of feature points are well constrained for SIFT.
ABSTRACT:This paper proposes an hybrid online calibration method for a laser scanner mounted on a mobile platform also equipped with an imaging system. The method relies on finding the calibration parameters that best align the acquired points cloud to the images. The quality of this intermodal alignment is measured by Mutual information between image luminance and points reflectance. The main advantage and motivation is ensuring pixel accurate alignment of images and point clouds acquired simultaneously, but it is also much more flexible than traditional laser calibration methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.