: Land use/cover change (LUCC) is one of the causes of global climate and environmental change. Understanding rapid LUCC in urbanized areas is vital for natural resources management for sustainable development. This study primarily considered Vientiane, the capital of Laos, which experienced rapid LUCC due to both natural and anthropogenic factors. The study used geographical information system (GIS) combined with ERDAS and TerrSet technologies to objectively process the ground surveyed and remotely obtained data in order to investigate the historical LUCC as well as predict future LUCC in the study area during the periods of 1995–2018 and 2030–2050, respectively. A comprehensive list of assessment factors comprised of both natural and anthropogenic factors was used for analysis using the cellular automata–Markov (CA–Markov) model. The results show a historical loss of intact forest of 24.36% and of bare land of 1.01%. There were also tremendous increases in degraded forest (11.36%), agricultural land (8.91%), built-up areas (4.49%) and water bodies (1.16%). Finally, the LUCC prediction results indicate the conversion of land use from one type to another, particularly from natural to anthropogenic use, in the near future. These changes demonstrate that the losses associated with ecosystem services will destructively impact human wellbeing in the city and other areas of the country. The study results provide the basic scientific knowledge for LUCC planners, urban designers and natural resources managers. They serve as a decision-making support tool for the establishment of sustainable land resource utilization policies in Vientiane and other cities of similar conditions.
Environmental risk has become an area of major concern and research, drawing special attention. This study on the environmental risk assessment (ERA) of Dar es Salaam Municipal Solid Waste comes at a time when the Government of Tanzania is becoming increasingly concerned about dealing with high levels of pollution from municipal solid waste (MSW). The paper employed the Driving force-Pressure-State-Impact-Response (DPSIR) model to establish an environmental risk indicator system and the analytical hierarchy process (AHP) to calculate and analyze risk values, based on the actual situation of MSW in the city of Dar es Salaam. It lists several measures that have been taken in response to the current significantly high levels of pollution, which have assisted in maintaining the environmental risk index (ERI) at a medium level (0.4–0.6) during the period from 2006–2017. However, these measures have not been adequate enough to manage the external pressure. The ERI has been increasing gradually, calling for timely formulation of demand-specific waste management policies to reduce the possibility of reaching the critical point in near future. With the use of the DPSIR model for ERA, this study has become highly valuable, providing empirical justification to reduce environmental risk from MSW, which is one of the main sources of environmental pollution in the urban areas of developing countries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.