: The capercaillie (Tetrao urogallus) in Central Europe is an endangered species of grouse that is thought to be highly susceptible to human disturbance, possibly causing local populations to decline. We investigated the behavioral response of capercaillie in the Black Forest, Germany, and the French Pyrenees to an off‐trail hiker by measuring flushing distances. Flushing distance varied with capercaillie sex, visibility of the hiker, intensity of winter tourism, and hunting pressure. Independent of the study area, males flushed at consistently longer distances than females, and lower visual blocking between bird and hiker resulted in longer flushing distances. Capercaillie flew at longer distances from an approaching hiker in areas with high intensity of winter tourism or hunting pressure than in undisturbed areas. We recommend the establishment of regulations requiring hikers to stay on trails and to close trails where intertrail distances fall below 100 m (90% of all flushing events appeared within 50 m). Furthermore, planting or preserving evergreen conifer trees in dense rows along critical parts of disturbance sources, reducing the degree of visibility between capercaillie and recreationists would increase habitat for capercaillie in forests with predictable recreation activities.
International audienceThe Western capercaillie (Tetrao urogallus) is a keystone species of Palearctic boreal and altitude coniferous forests. With the increase of mountain leisure activities and habitat loss, populations are declining in most mountain ranges in Western Europe. Recent work has shown that the populations from the Pyrenees and Cantabrian Mountains survived a severe bottleneck during the 19th century, and are still considered as threatened due to habitat fragmentation and isolation with other populations. We present an extensive phylogeographic study based on mitochondrial DNA sequence (control region) extracted non-invasively from faeces collected throughout the species range (from western European mountains to central and eastern Europe, Fenno-Scandia, Russia and Siberia). We also compared our results with DNA sequences of closely related black-billed capercaillie (T. parvirostris). We found that populations from Pyrenees and Cantabrians are closely related but are different from all other capercaillie populations that form a homogenous clade. Therefore, we consider that these South-Western populations should be considered as forming an Evolutionary Significant Unit that needs an appropriate management at a local scale. We also discuss the possible locations of glacial refugia and subsequent colonisation routes in Eurasia, with a Western "aquitanus" lineage from Iberia and Balkans, and an Eastern "urogallus" lineage from Southern Asia. This work might have important implication for capercaillie conservation strategies to define important areas for conservation, and to prevent possible exchange or introductions of individuals originated from other lineages
International audienceDeciphering the effects of climatic conditions on population dynamics is of major importance in understanding how organisms are likely to be affected by climate changes. Using data from broad-scale annual censuses between 1990 and 2007, we show that winter and summer North Atlantic Oscillations affect several breeding success indicators of the Black Grouse () in the French Alps. We did not find any trend in hen counts or breeding indexes over the study period. Surprisingly for a bird specialised in cold climates, we show that Black Grouse optimise their reproductive output for positive values of the winter NAO corresponding to the average NAO index of the last 30 years. Extreme NAO values lead to lower breeding success, indicating that the grouse may be more able to track trends in climate than an increase in the frequency of extreme years. Our result show that, at least from a short-term perspective, Black Grouse productivity is not threatened by a trend towards warmer climatic conditions in the Alps, but may be affected by an increased frequency of extreme years. We advocate the use of the NAO as a climate proxy rather than using heavily noised and biased local climate descriptors in studies focusing on the global response to climate over a large spatial scale
Conservation strategies centered around species habitat protection rely on species’ dietary information. One species at the focal point of conservation efforts is the herbivorous grouse, the western capercaillie (Tetrao urogallus), which is an indicator species for forest biodiversity conservation. Non‐molecular means used to study their diet are time‐consuming and at low taxonomic resolution. This delays the implementation of conservation strategies including resource protection due to uncertainty about its diet. Thus, limited knowledge on diet is hampering conservation efforts. Here, we use non‐invasive environmental DNA (eDNA) metabarcoding on DNA extracted from faces to present the first large‐scale molecular dietary analysis of capercaillies. Facal samples were collected from seven populations located in Norway (Finnmark, Troms, Trøndelag, Innlandet) and France (Vosges, Jura, Pyrenees) (n = 172). We detected 122 plant taxa belonging to 46 plant families of which 37.7% of the detected taxa could be identified at species level. The average dietary richness of each sample was 7 ± 5 SD taxa. The most frequently occurring plant groups with the highest relative read abundance (RRA) were trees and dwarf shrubs, in particular, Pinus and Vaccinium myrtillus, respectively. There was a difference in dietary composition (RRA) between samples collected from the different locations (adonis pseudo F5,86 = 11.01, r2 = 0.17, p = 0.001) and seasons (adonis pseudo F2,03 = 0.64, r2 = 0.01, p = 0.036). Dietary composition also differed between sexes at each location (adonis pseudo F1,47 = 2.77, r2 = 0.04, p = 0.024), although not significant for all data combined. In total, 35 taxa (36.8% of taxa recorded) were new capercaillie food items compared with existing knowledge from non‐molecular means. The non‐invasive molecular dietary analysis applied in this study provides new ecological information of capercaillies’ diet, improving our understanding of adequate habitat required for their conservation.
M e n o n i, E . 1997: L o ca tio n an d size o f c a p e rc aillie Tetrao urogallus le k s in re la tio n to territo ries o f he n s. -W ildl. B io l. 3: 137-147.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.