Finding the inverse kinematic solution of a serial manipulator has always attracted the attention of optimization enthusiasts, as the solution space is highly nonlinear and, depending on the number of degrees of freedom, has multiple solutions. In the literature, one can find several proposed solutions using heuristic techniques; however, for highly redundant manipulators, e.g., seven or more, the discussions focused on minimizing the positional error. In this paper, a metaheuristic approach is presented to solve not only the inverse kinematics of a 7 and 8 DOF manipulators but the proposed algorithm is used to find the robot's poses for trajectory planning where the robot is required to meet the desired position and orientation based on quaternion representation of each point along the path. The metaheuristic approach used in this paper is particle swarm optimization (PSO), where the unit quaternion is used in the objective function to find the orientation error. The results prove that the use of the unit quaternion representation improved the performance of the algorithm and that our approach can be used not only for individual poses but for trajectory planning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.