Abstract. The matrix barcodes known as Quick Response (QR) codes are rapidly becoming pervasive in urban environments around the world. QR codes are used to represent data, such as a web address, in a compact form that can be scanned readily and parsed by consumer mobile devices. They are popular with marketers because of their ease in deployment and use. However, this technology encourages mobile users to scan unauthenticated data from posters, billboards, stickers, and more, providing a new attack vector for miscreants. By positioning QR codes under false pretenses, attackers can entice users to scan the codes and subsequently visit malicious websites, install programs, or any other action the mobile device supports. We investigated the viability of QRcode-initiated phishing attacks, or QRishing, by conducting two experiments. In one experiment we visually monitored user interactions with QR codes; primarily to observe the proportion of users who scan a QR code but elect not to visit the associated website. In a second experiment, we distributed posters containing QR codes across 139 different locations to observe the broader application of QR codes for phishing. Over our four-week study, our disingenuous flyers were scanned by 225 individuals who subsequently visited the associated websites. Our survey results suggest that curiosity is the largest motivating factor for scanning QR codes. In our small surveillance experiment, we observed that 85% of those who scanned a QR code subsequently visited the associated URL.
We show that accelerometer readings are a powerful side channel that can be used to extract entire sequences of entered text on a smartphone touchscreen keyboard. This possibility is a concern for two main reasons. First, unauthorized access to one's keystrokes is a serious invasion of privacy as consumers increasingly use smartphones for sensitive transactions. Second, unlike many other sensors found on smartphones, the accelerometer does not require special privileges to access on current smartphone OSes. We show that accelerometer measurements can be used to extract 6-character passwords in as few as 4.5 trials (median).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.