Abstract. We develop the L 2 harmonic analysis for (Dirac) spinors on the real hyperbolic space H n (R) and give the analogue of the classical notions and results known for functions and differential forms: we investigate the Poisson transform, spherical function theory, spherical Fourier transform and Fourier transform. Very explicit expressions and statements are obtained by reduction to Jacobi analysis on L 2 (R). As applications, we describe the exact spectrum of the Dirac operator, study the Abel transform and derive explicit expressions for the heat kernel associated with the spinor Laplacian.
We give a lower bound for the bottom of the L 2 differential form spectrum on hyperbolic manifolds, generalizing thus a well-known result due to Sullivan and Corlette in the function case. Our method is based on the study of the resolvent associated with the Hodge-de Rham Laplacian and leads to applications for the (co)homology and topology of certain classes of hyperbolic manifolds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.