Rationale: Histologic stains have been used as the gold standard to visualize extracellular matrix (ECM) changes associated with airway remodeling in asthma, yet they provide no information on the biochemical and structural characteristics of the ECM, which are vital to understanding alterations in tissue function.Objectives: To demonstrate the use of nonlinear optical microscopy (NLOM) and texture analysis algorithms to image fibrillar collagen (second harmonic generation) and elastin (twophoton excited autofluorescence), to obtain biochemical and structural information on the remodeled ECM environment in asthma.Methods: Nontransplantable donor lungs from donors with asthma (n = 13) and control (n = 12) donors were used for the assessment of airway collagen and elastin fibers by NLOM, and extraction of lung fibroblasts for in vitro experiments.Measurements and Main Results: Fibrillar collagen is not only increased but also highly disorganized and fragmented within large and small asthmatic airways compared with control subjects, using NLOM imaging. Furthermore, such structural alterations are present in pediatric and adult donors with asthma, irrespective of fatal disease.In vitro studies demonstrated that asthmatic airway fibroblasts are deficient in their packaging of fibrillar collagen-I and express less decorin, important for collagen fibril packaging. Packaging of collagen fibrils was found to be more disorganized in asthmatic airways compared with control subjects, using transmission electron microscopy.Conclusions: NLOM imaging enabled the structural assessment of the ECM, and the data suggest that airway remodeling in asthma involves the progressive accumulation of disorganized fibrillar collagen by airway fibroblasts. This study highlights the future potential clinical application of NLOM to assess airway remodeling in vivo.
Chronic obstructive pulmonary disease (COPD) has been associated with aberrant epithelial-mesenchymal interactions resulting in inflammatory and remodelling processes. We developed a co-culture model using COPD and control-derived airway epithelial cells (AECs) and lung fibroblasts to understand the mediators that are involved in remodelling and inflammation in COPD.AECs and fibroblasts obtained from COPD and control lung tissue were grown in co-culture with fetal lung fibroblast or human bronchial epithelial cell lines. mRNA and protein expression of inflammatory mediators, pro-fibrotic molecules and extracellular matrix (ECM) proteins were assessed.Co-culture resulted in the release of pro-inflammatory mediators interleukin (IL)-8/CXCL8 and heat shock protein (Hsp70) from lung fibroblasts, and decreased expression of ECM molecules (e.g. collagen, decorin) that was not different between control and COPD-derived primary cells. This pro-inflammatory effect was mediated by epithelial-derived IL-1α and increased upon epithelial exposure to cigarette smoke extract (CSE). When exposed to CSE, COPD-derived AECs elicited a stronger IL-1α response compared with control-derived airway epithelium and this corresponded with a significantly enhanced IL-8 release from lung fibroblasts.We demonstrate that, through IL-1α production, AECs induce a pro-inflammatory lung fibroblast phenotype that is further enhanced with CSE exposure in COPD, suggesting an aberrant epithelial-fibroblast interaction in COPD.
Chronic obstructive pulmonary disease (COPD) is a progressive lung disease and is currently the fourth leading cause of death worldwide. Chronic inflammation and repair processes in the small airways are characteristic of COPD. Despite extensive efforts from researchers and industry, there is still no cure for COPD, hence an urgent need for new therapeutic alternatives. MicroRNAs are such an option; they are small noncoding RNAs involved in gene regulation. Their importance has been shown with respect to maintaining the balance between health and disease. Although previous reviews have discussed the expression of microRNAs related to lung disease, a detailed discussion regarding the function of differential miRNA expression in the pathogenesis of COPD is lacking.In this review we link the expression of microRNAs to different features of COPD and explain their importance in the pathogenesis of this disease. We further discuss their potential to contribute to the development of future therapeutic strategies. @ERSpublications Complexity of miRNAs in COPD: an up-to-date overview of the role of miRNAs in the different features of COPD http://ow.ly/Pk4FP
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.