Cancer stem cells (CSCs) represent a subset of cells within tumours that exhibit self-renewal properties and the capacity to seed tumours. CSCs are typically refractory to conventional treatments and have been associated to metastasis and relapse. Salinomycin operates as a selective agent against CSCs through mechanisms that remain elusive. Here, we provide evidence that a synthetic derivative of salinomycin, which we named ironomycin (AM5), exhibits a more potent and selective activity against breast CSCs in vitro and in vivo, by accumulating and sequestering iron in lysosomes. In response to the ensuing cytoplasmic depletion of iron, cells triggered the degradation of ferritin in lysosomes, leading to further iron loading in this organelle. Iron-mediated production of reactive oxygen species promoted lysosomal membrane permeabilization, activating a cell death pathway consistent with ferroptosis. These findings reveal the prevalence of iron homeostasis in breast CSCs, pointing towards iron and iron-mediated processes as potential targets against these cells.
Chromosomal instability (CIN), a feature of most adult neoplasms from their early stages onward, is a driver of tumorigenesis. However, several malignancy subtypes, including some triple-negative breast cancers, display a paucity of genomic aberrations, thus suggesting that tumor development may occur in the absence of CIN. Here we show that the differentiation status of normal human mammary epithelial cells dictates cell behavior after an oncogenic event and predetermines the genetic routes toward malignancy. Whereas oncogene induction in differentiated cells induces massive DNA damage, mammary stem cells are resistant, owing to a preemptive program driven by the transcription factor ZEB1 and the methionine sulfoxide reductase MSRB3. The prevention of oncogene-induced DNA damage precludes induction of the oncosuppressive p53-dependent DNA-damage response, thereby increasing stem cells' intrinsic susceptibility to malignant transformation. In accord with this model, a subclass of breast neoplasms exhibit unique pathological features, including high ZEB1 expression, a low frequency of TP53 mutations and low CIN.
Emerging high-throughput screening technologies are rapidly providing opportunities to identify new diagnostic and prognostic markers and new therapeutic targets in human cancer. Currently, cDNA arrays allow the quantitative measurement of thousands of mRNA expression levels simultaneously. Validation of this tool in hospital settings can be done on large series of archival paraffin-embedded tumor samples using the new technique of tissue microarray. On a series of 55 clinically and pathologically homogeneous breast tumors, we compared for 15 molecules with a proven or suspected role in breast cancer, the mRNA expression levels measured by cDNA array analysis with protein expression levels obtained using tumor tissue microarrays. The validity of cDNA array and tissue microarray data were first verified by comparison with quantitative reverse transcriptase-polymerase chain reaction measurements and immunohistochemistry on full tissue sections, respectively. We found a good correlation between cDNA and tissue array analyses in one-third of the 15 molecules, and no correlation in the remaining twothirds. Furthermore, protein but not RNA levels may have prognostic value; this was the case for MUC1 protein, which was studied further using a tissue microarray containing ϳ600 tumor samples. For THBS1 the opposite was observed because only RNA levels had prognostic value. Thus, differences extended to clinical prognostic information obtained by the two methods underlining their complementarity and the need for a global molecular analysis of tumors at both the RNA and protein levels.
Deletions and ampli®cations are frequent alterations of the short arm of chromosome 8 associated with various types of cancers, including breast cancers. This indicates the likely presence of tumor suppressor genes and oncogenes. In the present study, we have used the expressed sequence tag (EST) map of 8p11-21 to assemble a set of available cDNAs representing genes from this region. DNA arrays were prepared for expression analysis and search for genes potentially involved in breast cancer. Underexpresion in tumoral breast cells (versus normal breast) was observed for 15 transcripts. Among these, the Frizzled-related gene FRP1/FRZB, was turned o in 78% of breast carcinomas, suggesting that the lack of its product may be associated with malignant transformation. Overexpression in tumoral breast cells was observed for 13 genes. The FGFR1 gene, that encodes a tyrosine kinase receptor for members of the ®broblast growth factor family, was identi®ed as a good candidate for one ampli®cation unit. Taken together, our results demonstrate that such a strategy can rapidly identify genes with an altered pattern of expression and provide candidate genes for malignancies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.