Transforming growth factor-β (TGF-β) regulates a wide variety of biological processes through two types of Ser/Thr transmembrane receptors: the TGF-β type I receptor and the TGF-β type II receptor (TβRII). Upon ligand binding, TGF-β type I receptor activated by TβRII propagates signals to Smad proteins, which mediate the activation of TGF-β target genes. In this study, we identify ADAM12 (a disintegrin and metalloproteinase 12) as a component of the TGF-β signaling pathway that acts through association with TβRII. We found that ADAM12 functions by a mechanism independent of its protease activity to facilitate the activation of TGF-β signaling, including the phosphorylation of Smad2, association of Smad2 with Smad4, and transcriptional activation. Furthermore, ADAM12 induces the accumulation of TβRII in early endosomal vesicles and stabilizes the TβRII protein presumably by suppressing the association of TβRII with Smad7. These results define ADAM12 as a new partner of TβRII that facilitates its trafficking to early endosomes in which activation of the Smad pathway is initiated.
SUMMARYThe external cell layer that surrounds the fish primary myotome provides the myogenic precursors necessary for muscle growth, suggesting that this epithelium is equivalent to the amniote dermomyotome. In this study we report the identification of a trout orthologue of the dermal marker Dermo-1, and show that trout somitic external cells, which are all potentially myogenic as indicated by the transcription of Pax7 gene, express Dermo-1. This finding and our previous observation that external cells express collagen I show that these cells have dermis-related characteristics in addition to exhibiting myogenic features. In an effort to identify novel genes expressed in the external cell epithelium we performed an in situ hybridisation screen and found both collectin sub-family member 12, a transmembrane C-type lectin, and Seraf, an EGF-like repeat autocrine factor. In situ hybridisation of staged trout embryos revealed that the expression of Dermo-1, collectin sub-family member 12 and Seraf within the external cell layer epithelium was preceded by a complex temporal and spatial expression pattern in the early somite. Supplementary material available online at
Transforming growth factor  (TGF-) is a potent inhibitor of cell proliferation and the loss of responsiveness to TGF- may contribute to the development of human cancers. In hepatocellular carcinomas, the potential role of TGF- signaling as a tumor suppressor pathway can be illustrated by the presence of mutations in genes encoding TGF- receptors or downstream components of this signaling such as Smad2. Although Smad2 is mutated in hepatocellular carcinomas, the alteration of TGF- signaling with respect to tumor progression remains to be established. Using the HepG2 hepatoma cells, we showed here that expression of Smad2.Q407R, a missense mutation found in human hepatocellular carcinoma, was less effective than expression of wild-type Smad2 in enhancing the ability of TGF- to induce transcription from the Mix.2 promoter. This effect was specifically associated with a decrease in the steady-state level of Smad2.Q407R, presumably because of an enhancement of its ubiquitination and degradation through the proteasome machinery. More importantly, we found that the unstability of Smad2.Q407R was reversed when this mutant undergoes homo-oligomerization with wild-type Smad2 or hetero-oligomerization with Smad3 within the cells. Therefore, our findings allowed us to propose a novel mechanism for suppression of the deleterious effect of a tumor-derived mutation of Smad2, which loss may lead to dysregulated cell proliferation during tumorigenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.