We conduct in this work an evaluation study comparing offline and online neural machine translation architectures. Two sequence-to-sequence models: convolutional Pervasive Attention (Elbayad et al., 2018) and attention-based Transformer (Vaswani et al., 2017) are considered. We investigate, for both architectures, the impact of online decoding constraints on the translation quality through a carefully designed human evaluation on English-German and German-English language pairs, the latter being particularly sensitive to latency constraints. The evaluation results allow us to identify the strengths and shortcomings of each model when we shift to the online setup.
La traduction automatique neuronale et son adaptation à des domaines spécifiques par le biais de corpus spécialisés ont permis à cette technologie d’intégrer bien plus largement qu’auparavant le métier et la formation des traducteur·trice·s. Si le paradigme neuronal (et le deep learning de manière générale) a ainsi pu investir des domaines parfois insoupçonnés, y compris certains où la créativité est de mise, celui-ci est moins marqué par un gain phénoménal de performance que par une utilisation massive auprès du public et les débats qu’il génère, nombre d’entre eux invoquant couramment le cas littéraire pour (in)valider telle ou telle observation. Pour apprécier la pertinence de cette technologie, et ce faisant surmonter les discours souvent passionnés des opposants et partisans de la traduction automatique, il est toutefois nécessaire de mettre l’outil à l’épreuve, afin de fournir un exemple concret de ce que pourrait produire un système entraîné spécifiquement pour la traduction d’œuvres littéraires. Inscrit dans un projet de recherche plus vaste visant à évaluer l’aide que peuvent fournir les outils informatiques aux traducteurs et traductrices littéraires, cet article propose par conséquent une expérience de traduction automatique de la prose qui n’a plus été tentée pour le français depuis les systèmes probabilistes et qui rejoint un nombre croissant d’études sur le sujet pour d’autres paires de langues. Nous verrons que si les résultats sont encourageants, ceux-ci laissent présager une tout autre manière d’envisager la traduction automatique, plus proche de la traduction humaine assistée par ordinateur que de la post-édition pure, et que l’exemple des œuvres de littérature soulève en outre des réflexions utiles pour la traduction dans son ensemble.
This paper examines the frequency and functions of English and French opinion markers in 60 presentation transcripts of the EIIDA corpus in Linguistics and in Chemistry, Geochemistry, Marine, and Water Sciences. These functions, found in all four sub-corpora, include highlighting a general or strong opinion, proposing a hypothesis or negotiating with the audience, expressing doubt, or classifying information. Several important differences can be observed. First, the English verb think frequently functions as a discourse marker, more so than the French penser. In French, adverbials, the pronoun on and the conjunction que are frequent with an opinion verb, but were largely absent in English. In Linguistics, English speakers are more likely to express the subjective opinion that a result is “interesting”, whereas in the other three sub-corpora speakers are more likely to employ a modal verb, except with think, to hedge a statement. As regards to discipline, there appears to be slightly more markers of opinion in Linguistics. In the Sciences, markers of opinion are often related to an observation (on se rend compte, ‘one realizes’). Overall, opinion verbs tend here to be dialogic, serving to express doubt or to negotiate with the audience, rather than to confirm a forceful personal position.Keywords: oral academic discourse, opinion, English, French
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.