Heterocyclic aromatic amines (HAA) are initiating agents of colon carcinogenesis in animals and are suspected in the aetiology of human colon cancer. In the context of prevention, it seems interesting to test possible protective compounds, such as fermented milk, against HAA food carcinogens. Male F344 rats were used in a model of HAA-induced colon carcinogenesis. The HAA, 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ) and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) (ratio 1:1:1) were administered in food for a 7 week induction period, with a cumulative dose of 250 mg of the HAA, per kg body weight. Four different diets were given to four rat groups: supplemented with 20% water, 30% non-fermented milk, 30% Bifidobacterium animalis DN-173 010 fermented milk and 30% Streptococcus thermophilus DN-001 158 fermented milk. Fecal mutagenicity was quantified during the induction period. At the end of the treatment, DNA lesion levels were determined in the liver and colon using the number of 8-oxo-7,8-dihydro-2'desoxyguanosine (8-oxodGuo) oxidized bases, "3D Test" and comet assay. The metabolic activity of hepatic and colon cytochrome P450 (CYP450) 1A1 and 1A2 was also evaluated. Aberrant colon crypts were scored, 8 weeks after the last HAA treatment. The results showed that dairy products decreased the incidence of aberrant crypts in rats: 66% inhibition with the milk-supplemented diet, 96% inhibition with the B.animalis fermented milk-supplemented diet and 93% inhibition with the S.thermophilus fermented milk-supplemented diet. Intermediate biomarkers showed that there was a decrease in HAA metabolism, fecal mutagenicity and colon DNA lesions. These results demonstrate the early protective effect of milk in the carcinogenesis process. This effect being more pronounced in the case of milk fermented by lactic acid bacteria.
The industrial use of uranium, in particular depleted uranium, has pin-pointed the need to review its chemical impact on human health. Global methodologies, applied to the field of toxicology, have demonstrated their applicability to investigation of fine molecular mechanisms. This report illustrate the power of toxicogenomics to evaluate the involvement of certain genes or proteins in response to uranium. We particularly show that 25% of modulated genes concern signal transduction and trafficking, that the calcium pathway is heavily disturbed and that nephroblastomas-related genes are involved (WIT-1, STMN1, and STMN2). A set of 18 genes was deregulated whatever the concentration of toxicant, which could constitute a signature of uranium exposure. Moreover, a group of downregulated genes, with corresponding disappearing proteins (HSP90, 14-3-3 protein, HMGB1) in two-dimensional polyacrylamide gel electrophoresis (2-D PAGE), are good candidates for use as biomarkers of uranium effects. These results reveal a cross-checking between transcriptomic and proteomic technologies. Moreover, our temporal gene expression profiles suggest the existence of a concentration threshold between adaptive response and severe cell deregulation. Our results confirm the involvement of genes already described and also provide new highlights on cellular response to uranium.
Microflora-born bacteria or probiotic strains are able to modulate host-pathogens interactions in the gut. In vivo and in vitro studies indicate that species-specific modulations of intestinal cell glycosylation may represent a simple, general and efficient mechanism to adapt the host defense toward pathogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.