International audienceThe electrocatalytic reduction of carbon dioxide to formic acid on metallic electrodes is known to suffer from low current density and rapid surface contamination by electrolyte impurities. Gas diffusion electrodes (GDE) can overcome these problems due to their high specific surface area. In this work, we show a simple method to prepare indium coated gas diffusion electrodes (GDE-In/C) and their physical and electrochemical characterization. Indium is chosen for its ability to reduce CO 2 to formic acid at relatively low overpotential compared to other metals. The catalytic performance of the GDE-In/C is compared to an indium foil using identical operating conditions. During electrolysis in homogeneous aqueous media (dissolved CO 2) at-1.65 V vs. Ag/AgCl, the partial current density toward HCOOH on the GDE-In/C is 7 times higher than on the indium foil with a faradaic efficiency of 45%. The production of formic acid increases by 15% when a continuous flux of CO 2 gas is applied through the GDE-In/C. In addition, the GDE-In/C shows a good resistance to electrolyte impurities and allows to achieve higher current densities. These promising results are a key milestone in the development of a zero gap cell for gas phase CO 2 electroreductio
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.