Recognizing how climate change will impact populations can aid in making decisions about approaches for conservation of endangered species. The blunt-nosed leopard lizard (Gambelia sila) is a federally endangered species that, despite protection, remains in extremely arid, hot areas and may be at risk of extirpation due to climate change. We collected data on the field-active body temperatures, preferred body temperatures and upper thermal tolerance of G. sila. We then described available thermal habitat using biophysical models, which allowed us to (i) describe patterns in lizard body temperatures, microhabitat temperatures and lizard microhabitat use; (ii) quantify the lizards’ thermoregulatory accuracy; (iii) calculate the number of hours they are currently thermally restricted in microhabitat use; (iv) project how the number of restricted hours will change in the future as ambient temperatures rise; and (v) assess the importance of giant kangaroo rat burrows and shade-providing shrubs in the current and projected future thermal ecology of G. sila. Lizards maintained fairly consistent daytime body temperatures over the course of the active season, and use of burrows and shrubs increased as the season progressed and ambient temperatures rose. During the hottest part of the year, lizards shuttled among kangaroo rat burrows, shrubs, and open habitat to maintain body temperatures below their upper thermal tolerance, but, occasionally, higher than their preferred body temperature range. Lizards are restricted from staying in the open habitat for 75% of daylight hours and are forced to seek refuge under shrubs or burrows to avoid surpassing their upper thermal threshold. After applying climatic projections of 1 and 2°C increases to 2018 ambient temperatures, G. sila will lose additional hours of activity time that could compound stressors faced by this population, potentially leading to extirpation.
Globally, no species is exempt from the constraints associated with limited available habitat or resources, and endangered species in particular warrant critical examination. In most cases, these species are restricted to limited locations, and the relative likelihood of resource use within the space they can access is important. Using Gambelia sila, one of the first vertebrate species listed as endangered, we used resource selection function analysis of telemetry and remotely sensed data to identity key drivers of selected versus available locations for this species in Carrizo Plain National Monument, USA. We examined the probability of selection given different resource types. Increasing shrub cover, lower and relatively more flat sites, increasing normalized difference vegetation index, and solar radiation all significantly predicted likelihood of observed selection within the area sampled. Imagery data were also validated with fine-scale field data showing that large-scale contrasts of selection relative to available location patterns for animal species are a useful lens for potential habitat. Key environmental infrastructure such as foundation plant species including shrubs or local differences in the physical attributes were relevant to this endangered species.
Global climate change is already contributing to the extirpation of numerous species worldwide, and sensitive species will continue to face challenges associated with rising temperatures throughout this century and beyond. It is especially important to evaluate the thermal ecology of endangered ectotherm species now so that mitigation measures can be taken as early as possible. A recent study of the thermal ecology of the federally endangered Blunt‐nosed Leopard Lizard (Gambelia sila) suggested that they face major activity restrictions due to thermal constraints in their desert habitat, but that large shade‐providing shrubs act as thermal buffers to allow them to maintain surface activity without overheating. We replicated this study and also included a population of G. sila with no access to large shrubs to facilitate comparison of the thermal ecology of G. sila populations in shrubless and shrubbed sites. We found that G. sila without access to shrubs spent more time sheltering inside rodent burrows than lizards with access to shrubs, especially during the hot summer months. Lizards from a shrubbed site had higher midday body temperatures and therefore poorer thermoregulatory accuracy than G. sila from a shrubless site, suggesting that greater surface activity may represent a thermoregulatory trade‐off for G. sila. Lizards at both sites are currently constrained from using open, sunny microhabitats for much of the day during their short active seasons, and our projections suggest that climate change will exacerbate these restrictions and force G. sila to use rodent burrows for shelter even more than they do now, especially at sites without access to shrubs. The continued management of shrubs and of burrowing rodents at G. sila sites is therefore essential to the survival of this endangered species.
Understanding the mechanisms behind critical thermal maxima (CTmax; the high body temperature at which neuromuscular coordination is lost) of organisms is central to understanding ectotherm thermal tolerance. Body size is an often overlooked variable that may affect interpretation of CTmax, and consequently, how CTmax is used to evaluate mechanistic hypotheses of thermal tolerance. We tested the hypothesis that body size affects CTmax and its interpretation in two experimental contexts. First, in four Sceloporus species, we examined how inter‐ and intraspecific variation in body size affected CTmax at normoxic and experimentally induced hypoxic conditions, and cloacal heating rate under normoxic conditions. Negative relationships between body size and CTmax were exaggerated in larger species, and hypoxia‐related reductions in CTmax were unaffected by body size. Smaller individuals had faster cloacal heating rates and higher CTmax, and variation in cloacal heating rate affected CTmax in the largest species. Second, we examined how body size interacted with the location of body temperature measurements (i.e., cloaca vs. brain) in Sceloporus occidentalis, then compared this in living and deceased lizards. Brain temperatures were consistently lower than cloacal temperatures. Smaller lizards had larger brain‐cloacal temperature differences than larger lizards, due to a slower cloacal heating rate in large lizards. Both live and dead lizards had lower brain than cloacal temperatures, suggesting living lizards do not actively maintain lower brain temperatures when they cannot pant. Thermal inertia influences CTmax data in complex ways, and body size should therefore be considered in studies involving CTmax data on species with variable sizes.
Numerous pressures influence the ecological capacity and health of drylands globally. Shrubs are often a critical component of these systems and can function positively as foundation species through facilitation of other species. Nonetheless, limited attention has been paid to the potential negative and indirect effects of shrubs. Here, we tested the hypothesis that plant facilitation can both accelerate the invasion process and amplify the negative effects of an invader on the native community. The invasive species Bromus madritensis ssp. rubens capitalized on facilitation by resident native shrub species. This in turn further degraded California mixed grasslands by negatively impacting other annual protégé plant species in these specific microhabitats. Indirect shrub‐mediated interactions were thus a critical component of the ecological community assembly processes, and this suggests that we need to move beyond pairwise interactions to more rapidly advance grassland management and restoration theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.