In the context of green chemistry, the replacement of high molecular weight stoichiometric oxidants with O2 is most desirable but difficult. Here, we report the asymmetric aerobic oxidative synthesis of dihydropyranones. The oxidation is aided by a system of electron transfer mediators and is selective toward the homoenolate. The dihydropyranones can be isolated in high to excellent yields, with high ee (up to 95%).
We present a general protocol for the formal Michael addition of acetone to α,β‐unsaturated esters and amides, a transformation difficult to perform using current methods. The protocol comprises of an amidine catalyzed relay ring‐opening and fragmentation of 3,4‐dihydropyranones. The reaction proceeds under mild conditions, has a broad substrate scope and the products can be isolated in good to excellent yields. The method can be applied to homochiral substrates with total preservation of chiral information, generating products in high optical purity. Kinetic experiments supported by quantum chemical modeling indicate a mechanism in which the catalyst takes a bifunctional role, acting both as a Brønsted base and as a hydrogen‐bond donor.
<div><div><div><p>We present a general protocol for the formal Michael addition of acetone to a,b-unsaturated esters and amides, a transformation difficult to perform using current methods. The protocol comprises of an amidine catalyzed relay ring-opening and fragmentation of 3,4-dihydropyranones. The reaction proceeds under mild conditions, has a broad substrate scope and the products can be isolated in good to excellent yields (30 examples, with up to 97 % yield). The method can be applied to homochiral substrates with total preservation of chiral information, generating products in high optical purity. Kinetic experiments upported by quantum chemical modeling indicates that the reaction is of second order with respect to the catalyst. The kinetic isotope effect has been determined to be 2.3, which supports a mechanism in which the catalyst takes a bifunctional role, acting both as a Brønsted base and as a hydrogen bond donor. The findings presented here enables a rapid entry to compounds previously considered difficult to access and highlights the dual functionality of amidine superbases as catalysts.</p></div></div></div>
<div><div><div><p>We present a general protocol for the formal Michael addition of acetone to a,b-unsaturated esters and amides, a transformation difficult to perform using current methods. The protocol comprises of an amidine catalyzed relay ring-opening and fragmentation of 3,4-dihydropyranones. The reaction proceeds under mild conditions, has a broad substrate scope and the products can be isolated in good to excellent yields (30 examples, with up to 97 % yield). The method can be applied to homochiral substrates with total preservation of chiral information, generating products in high optical purity. Kinetic experiments upported by quantum chemical modeling indicates that the reaction is of second order with respect to the catalyst. The kinetic isotope effect has been determined to be 2.3, which supports a mechanism in which the catalyst takes a bifunctional role, acting both as a Brønsted base and as a hydrogen bond donor. The findings presented here enables a rapid entry to compounds previously considered difficult to access and highlights the dual functionality of amidine superbases as catalysts.</p></div></div></div>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.