Abstract. Caveolae or noncoated plasmalemmal vesicles found in a variety of cells have been implicated in a number of important cellular functions including endocytosis, transcytosis, and potocytosis. Their function in transport across endothelium has been especially controversial, at least in part because there has not been any way to selectively inhibit this putative pathway. We now show that the ability of sterol binding agents such as filipin to disassemble endothelial noncoated but not coated plasmalemmal vesicles selectively inhibits caveolae-mediated intracellular and transcellular transport of select macromolecules in endothelium. Filipin significantly reduces the transcellular transport of insulin and albumin across cultured endothelial cell monolayers. Rat lung microvascular permeability to albumin in situ is significantly decreased after filipin perfusion. Conversely, paracellular transport of the small solute inulin is not inhibited in vitro or in situ. In addition, we show that caveolae mediate the scavenger endocytosis of conformationally modified albumins for delivery to endosomes and lysosomes for degradation. This intracellular transport is inhibited by filipin both in vitro and in situ. Other sterol binding agents including nystatin and digitonin also inhibit this degradative process. Conversely, the endocytosis and degradation of activated tx2-macroglobulin, a known ligand of the clathrin-dependent pathway, is not affected. Interestingly, filipin appears to inhibit insulin uptake by endothelium for transcytosis, a caveolae-mediated process, but not endocytosis for degradation, apparently mediated by the clathrincoated pathway. Such selective inhibition of caveolae not only provides critical evidence for the role of caveolae in the intracellular and transcellular transport of select macromolecules in endothelium but also may be useful for distinguishing transport mediated by coated versus noncoated vesicles.
Dermagraft is three-dimensional, allogeneic, human neonatal dermal fibroblast culture grown on a degradable scaffold and cryopreserved. Clinical trials for treatment of diabetic foot ulcers showed optimal healing within a therapeutic range of metabolic activity, determined by 3[4,5-dimethylthiazol-2-yl]2,5-diphenyltetrazolium bromide (MTT) reduction. Actions of Dermagraft in wound repair include colonization by cells and provision of growth factors and cytokines, both activities dependent on living cells. Cells in the cryopreserved culture showed 60% viability by dye exclusion and, when isolated, were able to proliferate in monolayer culture. Protein synthesis by Dermagraft was inhibited 70-98% by cryopreservation, but, if within the therapeutic range, recovered to 45-85% of the prefreeze value over 48 h. Subtherapeutic Dermagraft showed variable, low recovery. Expression of mRNA for vascular endothelial growth factor (VEGF), platelet-derived growth factor A chain, and insulin-like growth factor-1 was reduced >83% in subtherapeutic compared with therapeutic Dermagraft. Granulocyte colony-stimulating factor and VEGF protein secretion, determined by enzyme-linked immunosorbent assay (ELISA), and angiogenic activity also depended on therapeutic range. VEGF secretion dropped sharply with MTT reductase in subtherapeutic tissue. The data demonstrate the critical dependence of the therapeutic properties of this living dermal implant on recovery of protein synthesis, growth factor expression, and angiogenesis, determined by metabolic activity.
The expression of SPARC (secreted protein acidic and rich in cysteine/osteonectin/BM-40) is elevated in endothelial cells participating in angiogenesis in vitro and in vivo. SPARC acts on endothelial cells to elicit changes in cell shape and to inhibit cell cycle progression. In addition, SPARC binds to and diminishes the mitotic activity of vascular endothelial growth factor. To determine the effect(s) of SPARC on angiogenic responses in vivo, we implanted polyvinyl alcohol sponges subcutaneously into wild-type and SPARC-null mice. On days 12 and 20 following implantation, SPARC-null mice showed increased cellular invasion of the sponges in comparison to wild-type mice. Areas of the sponge with the highest cell density exhibited the highest numbers of vascular profiles in both wild-type and SPARC-null animals. The endothelial component of the vessels was substantiated by immunoreactivity with three different markers specific for endothelial cells. Although sponges from SPARC-null relative to wild-type mice were populated by significantly more cells and blood vessels, an increase in the ratio of vascular to nonvascular cells was not apparent. No differences in the percentage of proliferating cells within the sponge were detected between wild-type and SPARC-null sections. However, elevated levels of vascular endothelial growth factor were associated with sponges from SPARC-null versus wild-type mice. An increase in vascular endothelial growth factor production was also observed in SPARC-null primary dermal fibroblasts relative to those of wild-type cells. In conclusion, we have shown that the fibrovascular invasion of polyvinyl alcohol sponges is enhanced in mice lacking SPARC, and we propose that increased levels of vascular endothelial growth factor account, at least in part, for this response.
Human neonatal fibroblasts were cultured on a lactate-glycollate copolymer scaffold for 12-16 days to form a three-dimensional dermal equivalent tissue. The cellular content of vascular endothelial growth factor (VEGF) mRNA in these three-dimensional cultures was 22-fold greater than that observed in the same fibroblasts grown as monolayers. No induction was shown by hepatocyte growth factor (HGF) or angiopoietin 1 indicating that the effect was specific to VEGF. The predominant VEGF splice variant, detected by RT-PCR corresponded to the 121 amino acid form, with less of the 165 amino acid form. The cell-associated forms (189 and 206 amino acids) comprised less than 1% of the total VEGF mRNA. VEGF and HGF proteins, determined by ELISA, were secreted in physiologically significant amounts, 0.5-4 ng per 24 h/10(6) cells. Conditioned medium from the three-dimensional cultures stimulated proliferation of endothelial cells in a dose-dependent manner and induced cellular expression of integrin alpha(v)beta(3). Conditioned medium from the same dermal fibroblasts cultured in monolayer showed little angiogenic activity in any of these assays. Using the chorioallantoic membrane (CAM) angiogenesis assay, the cultures stimulated blood vessel production 2.8-fold over scaffold alone. VEGF-neutralizing antibody reduced the vessel development in the CAM to the level in the scaffold control. Anti-HGF antibody had no significant effect. In conclusion, three-dimensional cultures of dermal equivalent tissue express angiogenic activity to a greater extent than monolayer cultures, some of which can be assigned to VEGF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.