Stress shielding phenomenon is an important issues in considering the primary stability of the cementless hip arthroplasty. Stress shielding occurs when there is a mismatch in the elastic modulus of two materials perfectly bonded to each other, such as the prosthesis stem and the bone. In this study, influences of different prosthesis stem lengths on stress distribution in cementless THA are examined using finite element method. The calculated stress distribution is discussed with respect to stress shielding and primary stability issues in THA femur cases. Results show that similar pattern in stress distribution for intact and THA femur but differs in magnitudes. The stress level increases from the neck to the middle region and peaks at locations coinciding with the tip of the prosthesis. The maximum stress for intact femur is 55.5 MPa, THA with short stem is defined up to 112 MPa, while with medium and long stem are 204 MPa and 278 MPa, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.