A high-efficiency optically pumped vertical-external-cavity surface-emitting laser emitting 20 W at a wavelength around 588 nm is demonstrated. The semiconductor gain chip emitted at a fundamental wavelength around 1170-1180 nm and the laser employed a V-shaped cavity. The yellow spectral range was achieved by intra-cavity frequency doubling using a LBO crystal. The laser could be tuned over a bandwidth of ~26 nm while exhibiting watt-level output powers. The maximum conversion efficiency from absorbed pump power to yellow output was 28% for continuous wave operation. The VECSEL's output could be modulated to generate optical pulses with duration down to 570 ns by directly modulating the pump laser. The high-power pulse operation is a key feature for astrophysics and medical applications while at the same time enables higher slope efficiency than continuous wave operation owing to decreased heating.
Conclusions:The investigational PhotoLase laser enables significantly faster treatments, but the process is somewhat more painful than with KTP, otherwise providing a similar clinical outcome in the treatment of facial telangiectasia. Treatment Protocol Lasers Surg. Med. 51:223-229, 2019.
A high-power optically-pumped vertical-external-cavity surface-emitting laser (VECSEL) generating 10.5 W of cw output power at 615 nm is reported. The gain mirror incorporated 10 GaInNAs quantum wells and was designed to have an emission peak in the 1230 nm range. The fundamental emission was frequency doubled to the red spectral range by using an intra-cavity nonlinear LBO crystal. The maximum optical-to-optical conversion efficiency was 17.5%. The VECSEL was also operated in pulsed mode by directly modulating the pump laser to produce light pulses with duration of ~1.5 µs. The maximum peak power for pulsed operation (pump limited) was 13.8 W. This corresponded to an optical-to-optical conversion efficiency of 20.4%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.