Murine radiation-induced acute myeloid leukaemia (AML) is characterized by loss of one copy of chromosome 2. Previously, we positioned the critical haematopoietic-specific transcription factor PU.1 within a minimally deleted region. We now report a high frequency (>65%) of missense mutation at codon 235 in the DNAbinding Ets domain of PU.1 in murine AML. Earlier studies, outside the context of malignancy, determined that conversion of arginine 235 (R235) to any other amino-acid residue leads to ablation of DNA-binding function and loss of expression of downstream targets. We show that mutation of R235 does not lead to protein loss, and occurs specifically in those AMLs showing loss of one copy of PU.1 (P ¼ 0.001, Fisher's exact test). PU.1 mutations were not found in the coding region, UTRs or promoter of human therapy-related AMLs. Potentially regulatory elements upstream of PU.1 were located but no mutations found. In conclusion, we have identified the cause of murine radiation-induced AML and have shown that loss of one copy of PU.1, as a consequence of flanking radiation-sensitive fragile domains on chromosome 2, and subsequent R235 conversion are highly specific to this mouse model. Such a mechanism does not operate, or is extremely rare, in human AML.
Radiation-induced acute myeloid leukemias (AMLs) in the mouse are characterized by chromosome 2 deletions. Previous studies showed that a minimal deleted region (mdr) of approximately 6.5 cM is lost from one homologue in chromosome 2-deleted AMLs. An AML tumor suppressor gene is proposed to map within this mdr. In this study, we refine the mdr to a I cM interval between markers D2Mit126 and D2Mit185 by microsatellite analysis of 21 primary radiation-induced F I AMLs. The construction of a partial yeast artificial chromosome (YAC) contig spanning the mdr and the location of six known genes indicated that the 1 cM mdr is homologous to human 11p11-12, a region implicated in some human AMLs. Screening of five cell lines derived from primary radiation-induced AMLs for homozygous loss of microsatellites and genes mapping within the mdr revealed loss of both copies of the hemopoietic tissue-specific transcription factor Sfpi1(PU.1/Spi1) in one cell line. Studies of primary and F1 AMLs failed to implicate Sfpi1 as the AML tumor suppressor gene. YAC contig construction, together with data suggesting that the critical gene flanks Sfpi1, represents significant progress toward identifying an AML tumor suppressor gene.
From studies of the atomic bomb survivors, it is well known that ionizing radiation causes several forms of leukemia. However, since the specific mechanism behind this process remains largely unknown, it is difficult to extrapolate carcinogenic effects at acute high-dose exposures to risk estimates for the chronic low-dose exposures that are important for radiation protection purposes. Recently, it has become clear that the induction of acute myeloid leukemia (AML) in CBA/H mice takes place through two key steps, both involving the Sfpi1 gene. A similar mechanism may play a role in human radiation-induced AML. In the present paper, a two-mutation carcinogenesis model is applied to model AML in several data sets of X-ray- and neutron-exposed CBA/H mice. The models obtained provide good fits to the data. A comparison between the predictions for neutron-induced and X-ray-induced AML yields an RBE for neutrons of approximately 3. The model used is considered to be a first step toward a model for human radiation-induced AML, which could be used to estimate risks of exposure to low doses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.