The present experimental in vitro study suggests that a primitive streak (PS) in avian blastoderms is induced by diffusion of morphogenetic substances emanating from Rauber's sickle. Indeed, even without direct contact between a quail Rauber's sickle and the reacting upper layer (by interposition of a vitelline membrane), a PS can be induced in the isolated area centralis or antisickle region of unincubated chicken blastoderms. The so-formed PSs are localized below the vitelline membrane in the immediate neighborhood of the apposed Rauber's sickle material. This seems to indicate that Rauber's sickle organizes the formation of the avian PS according to the basic concept of "positional information." The morphogenetic substances seem to have an effect only on the formation of a PS. Each part of Rauber's sickle seems to have, point by point, the same thickening and PS-inducing effect on each corresponding part of the underlying upper layer (UL). By a mechanism of sliding over the basement membrane and fusion, this finally results in the formation of one single median PS. Our study shows that a PS can be induced in the total absence of hypoblast (sickle endoblast) or caudal marginal zone, by only the presence of Rauber's sickle material. In contrast, the differentiation of mesoblast into blood islands under the influence of Rauber's sickle and neural tissue development are impaired by the interposition of a vitelline membrane. The latter could be due to the absence of a normal interaction of Rauber's sickle-derived sickle endoblast with endophyll and/or upper layer and the absence of cranial migration of the mesoblast. Thus, earlier studies and the present study indicate the existence of a temporospatially bound cascade of gastrulation and neurulation phenomena and blood island formation in the avian blastoderm, starting from Rauber's sickle, the primary major organizer with inducing, inhibiting, and dominating potencies. The latter not only plays a role by secretion of signaling molecules, but also influences development by its cell lineages (junctional endoblast and sickle endoblast).
By excision at different sites of rectangular fragments from unincubated chicken blastoderms and replacement by isotopic fragments from unincubated quail blastoderms, we could make the first complete map of the Anlage fields in the freshly laid avian blastoderm. All the Anlage fields (Fig. 11) are found in the upper layer (UL) of the caudal half of the area centralis (bordered by the Rauber-Koller's sickle). In the UL of the area marginalis, peripheral to Rauber-Koller's sickle, neither gastrulation nor neurulation phenomena could be observed. Similar heterotopic replacement experiments indicate that before incubation, the different parts of the UL of the area centralis are still uncommitted or reversibly committed. The Anlage fields of chordamesoblast and definitive endoderm (gut endoderm) in unincubated avian blastoderms appeared to be disposed caudally in the caudal half of the area centralis. As far as we know we are the first to demonstrate that the Anlage field of the definitive gut endoderm (which is derived from the upper layer: Hunt, 1937; Vakaet, 1962b) is localized in the most caudal upper layer part of the area centralis just centrally to the Rauber-Koller's sickle. The Anlage field of the neural plate is localized in the upper layer over the more cranial endophyll. The Anlage of the brain is shield-shaped, whilst the other Anlage fields are sickle-shaped, parallel with the Rauber-Koller's sickle. Their general hemicircular disposition and form still seem to reflect (together with the Rauber-Koller's sickle) the original ooplasmic radial symmetry (Callebaut, 1972) combined with the eccentricity of the deep layer components, which was observed during early symmetrization by gravitational orientation of the egg yolk (Callebaut, 1993a,b). The Rauber-Koller's sickle might be homologous with the vegetal dorsalizing cells or centre of Nieuwkoop (1973) in amphibian blastulas.
Using the quail-chick chimera technique, we followed the fate of Rauber's sickle cells in older whole blastoderms (cultured for approximately 2 days): after removal of the autochthonous Rauber's sickle from an unincubated chicken blastoderm, a quail Rauber's sickle was grafted isotopically and isochronically in its place. In transverse sections through these chimeras, the grafted quail Rauber's sickle cells were seen to have transformed into a broad row or ridge of quail junctional endoblast cells extending at the inner border of the area containing blood islands. After unilateral removal of the junctional endoblast from an intermediate streak chicken blastoderm (Stage 3; Hamburger and Hamilton [1951] J Morphol 88:49-92), we observed during further in vitro culture that at the operated side, in the area previously occupied by this junctional endoblast, blood islands no longer developed. If after such a unilateral removal of the chicken junctional endoblast quail junctional endoblast was apposed in its place, then blood islands reappeared in the operated area. The intimate contact between the apposed quail junctional endoblast and the recently formed blood islands, derived from peripherally migrating mesoderm, was very obvious on sections through such chimeras. We further demonstrate that Rauber's sickle vs. junctional endoblast is indispensable for the anlage of blood islands in avian blastoderms. Indeed, in the absence of Rauber's sickle material no blood islands develop (even when mesoderm is present after ingression of the upper layer via a primitive streak) in the isolated central region of the area centralis of unincubated chicken blastoderms after culture in vitro. Also, no junctional endoblast and no sickle canal appear in these explants. By contrast, if a Rauber's sickle fragment is placed on such an isolated central blastoderm region, then blood islands develop. These blood islands start to develop from peripherally migrating mesoderm in the neighborhood of the Rauber's sickle-derived junctional endoblast.
By the quail-chicken chimera technique, we studied, in culture, the inducing effect of sickle endoblast (derived from Rauber's sickle by centripetal and cranial migration) on the isolated Rauber's sickle-free central part of the area centralis or on the isolated Rauber's sickle-free anti-sickle region from unincubated chicken blastoderms. Just as Rauber's sickle, the flat one-cell-thick sickle endoblast (Stage 2-3, Hamburger & Hamilton, 1951) induces a primitive streak (PS) and a neural plate in the area centralis. If a vitelline membrane is interposed between the sickle endoblast and the area centralis, then a small primitive streak is still induced, suggesting the effect of a diffusible factor on PS formation. In the adjacent upper layer of an isolated anti-sickle region the apposed sickle endoblast induces only a (pre)neural plate. By contrast, this (pre)neural plate inducing effect is rapidly and totally suppressed after grafting on the anti-sickle region of whole unincubated blastoderms. This suggests dominating positional information phenomena emanating from Rauber's sickle over the whole blastoderm. After grafting sickle endoblast either on the isolated area centralis or on isolated anti-sickles, no junctional endoblast and no blood islands developed. This suggests that the differentiation of Rauber's sickle material into sickle endoblast is irreversible. Our results indicate that Rauber's sickle material under the form of sickle endoblast also influences early neurulation phenomena (at distance in space and time). The present study indicates the existence of a temporo-spatially bound cascade of gastrulation and neurulation phenomena and blood island formation in the avian blastoderm, starting from Rauber's sickle, the primary major organizer with inducing, inhibiting and dominating potencies. The latter not only plays a role by secretion of signalling molecules (positional information) but it also influences development by its cell lineages (junctional endoblast and sickle endoblast).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.