In this report we introduce the design and prototype implementation of a bio hybrid pump driven by cardiac muscle tissue to supply other biological actuators in a larger bio hybrid robotic system sufficiently with nutrition media. Recently introduced bio hybrid pumps are analyzed and compared. On this basis a diaphragm pump design is chosen as physical principal and a functional prototype is designed. The derived requirements regarding the flowrates and long-term stability are verified with mechanical tests of the implemented prototype. The pump itself will consist of a body, an actuating membrane (to carry future muscle cells), a cylindrical spacer block, a returning diaphragm and the retaining ring. During operation the flow direction is implemented by two check valves. Our mechanical verification results show a flowrate of 14.2 ml/min with an activation frequency of 1 Hz. For the displacement of the returning diaphragm a required force of 0.58 N is determined. This is well within the capabilities of cardio myocytes which are in the range of 2 to 5 nN/μm2 and therefore could generate 0.63 to 1.57 N given the area of the 40 mm diameter membrane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.