In this paper, water quenching of large ingots was simulated using FORGE NxT 1.1 ® Finite Element code. Simulations were carried out for as-forged medium-carbon low-alloy steel. A novel method is proposed to simulate the different parts of a large size forged block with different chemical compositions and grain sizes using the multiple materials method. The effects of macrosegregation, grain size variation and cooling rate on phase distribution through the volume of the forged block were investigated. The delay in transformation kinetics, which is due to the effect of grain size variation and carbon content, was analyzed. Results show that macrosegregation and grain size variations significantly influence transformation start points and the volume fraction of phases that are present in each location of the forged ingot. The proposed prediction method was validated using high-resolution dilatometry experiments and X-ray diffraction measurements to evaluate accurately the volume fraction of martensite, bainite and the percentage of retained austenite for each condition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.