Advances supported by emerging wearable technologies in healthcare promise patients a provision of high quality of care. Wearable computing systems represent one of the most thrust areas used to transform traditional healthcare systems into active systems able to continuously monitor and control the patients' health in order to manage their care at an early stage. However, their proliferation creates challenges related to data management and integration. The diversity and variety of wearable data related to healthcare, their huge volume and their distribution make data processing and analytics more difficult. In this paper, we propose a generic semantic big data architecture based on the "Knowledge as a Service" approach to cope with heterogeneity and scalability challenges. Our main contribution focuses on enriching the NIST Big Data model with semantics in order to smartly understand the collected data, and generate more accurate and valuable information by correlating scattered medical data stemming from multiple wearable devices or/and from other distributed data sources. We have implemented and evaluated a Wearable KaaS platform to smartly manage heterogeneous data coming from wearable devices in order to assist the physicians in supervising the patient health evolution and keep the patient up-to-date about his/her status.
Due to its abilities to capture real-time data concerning the physical world, the Internet of Things (IoT) phenomenon is fast gaining momentum in different applicative domains. Its benefits are not limited to connecting things, but lean on how the collected data is transformed into insights and interact with domain experts for better decisions. Nonetheless, a set of challenges including the complexity of IoT-based systems and the management of the ensuing big and heterogeneous data and as well as the system scalability; need to be addressed for the development of flexible smart IoT-based systems that drive the business decision-making. Consequently, inspired from the human nervous system and cognitive abilities, we have proposed a set of autonomic cognitive design patterns that alleviate the design complexity of smart IoT-based systems, while taking into consideration big data and scalability management. The ultimate goal of these patterns is providing generic and reusable solutions for elaborating flexible smart IoTbased systems able to perceive the collected data and provide decisions. These patterns are articulated within a model-driven methodology that we have proposed to incrementally refine the system functional and nonfunctional requirements. Following the proposed methodology, we have combined and instantiated a set of patterns for developing a flexible cognitive monitoring system to manage patients' health based on heterogeneous wearable devices. We have highlighted the gained flexibility and demonstrated the ability of our system to integrate and process heterogeneous 2 large scale data streams. Finally, we have evaluated the system performance in terms of response time and scalability management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.