In this paper, an assessment on the health index (HI) of transformers is carried out based on Neural-Fuzzy (NF) method. In-service condition assessment data, such as dissolved gases, furans, AC breakdown voltage (ACBDV), moisture, acidity, dissipation factor (DF), color, interfacial tension (IFT), and age were fed as input parameters to the NF network. The NF network were trained individually based on two sets of data, known as in-service condition assessment and Monte Carlo Simulation (MCS) data. HI was also obtained from the scoring method for comparison with the NF method. It is found that the HI of transformers that was obtained by NF trained by MCS method is closer to scoring method than NF trained by in-service condition assessment method. Based on the total of 15 testing transformers, NF trained by MCS data method gives 10 transformers with the same assessments as scoring method as compared to eight transformers given by NF trained by in-service condition data method. Analysis based on all 73 transformers reveals that 62% of transformers have the same assessments between NF trained by MCS data and scoring methods.
In this paper, a maintenance cost study of transformers based on the Markov Model (MM) utilizing the Health Index (HI) is presented. In total, 120 distribution transformers of oil type (33/11 kV and 30 MVA) are examined. The HI is computed based on condition assessment data. Based on the HI, the transformers are arranged according to its corresponding states, and the transition probabilities are determined based on frequency of a transition approach utilizing the transformer transition states for the year 2013/2014 and 2012/2013. The future states of transformers are determined based on the MM chain algorithm. Finally, the maintenance costs are estimated based on future-state distribution probabilities according to the proposed maintenance policy model. The study shows that the deterioration states of the transformer population for the year 2015 can be predicted by MM based on the transformer transition states for the year 2013/2014 and 2012/2013. Analysis on the relationship between the predicted and actual computed numbers of transformers reveals that all transformer states are still within the 95% prediction interval. There is a 90% probability that the transformer population will reach State 1 after 76 years and 69 years based on the transformer transition states for the year 2013/2014 and 2012/2013. Based on the probability-state distributions, it is found that the total maintenance cost increases gradually from Ringgit Malaysia (RM) 5.94 million to RM 39.09 million based on transformer transition states for the year 2013/2014 and RM 37.56 million for the year 2012/2013 within the 20 years prediction interval, respectively.
Dissolved Gas Analysis (DGA) is one of the common approaches that can be used to detect incipient faults in transformers. According to IEEE C57/104-2008 and IEC 60599 standards, there are many DGA techniques that can be used to interpret the type of faults. In this paper, an alternative method to diagnose faults in transformers based on Rough Set (RS) and Fuzzy Logic (FL) is proposed. The rules for the FL are generated from the attributes of RS. Based on this method, it was found that the efficiency of the fault interpretation based on RS/FL is improved compared to the conventional methods in standards.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.